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Introduction

> | am assuming knowledge of basic model theory as was
covered in the introductory meeting in Luminy.

» Here | will discuss some basic but possibly more advanced
notions, definitions, results, etc. with an eye to some of the
later talks in this series as well as the themes of the IHP
program.

» Such as type spaces, definable families, Keisler measures,
pseudofiniteness, and continuous logic.



Model theory |

» The objects of study of model theory are first order (finitary)
theories T' (often complete) in some language L.

» These include "“foundational” theories such as set theory,
Peano arithmetic, second order arithmetic, as well as “tame”
theories such as the theories of algebraically closed fields and
real closed fields.

» More often than not, classes of theories (e.g. stable, NIP,
o-minimal,...) are identified and studied. Sometimes the
information obtained is meaningful in specific examples,
resulting in “applications”.



Model theory I

> We feel free to work in a many-sorted environment, where the
syntax includes sorts s; (i ranging over some index set), all
variables come with a sort, and relation and function symbols
are sorted. For an L-structure M, s;(M) denotes the
interpretation of the sort s; in M.

» A definable set in an L-structure M is by definition a subset
of some Cartesian product s1(M) X .. X s,(M) of sorts
defined in M by a formula ¢(z1,..,2y,). If we allow additional
parameters from some set A in M (i.e. in the union of the
sorts of M) we say “definable over A, or A-definable” in M.

» A theory T' comes with various “invariants” such as Mod(T)
the category of models of T' (with elementary maps), and
Def(T) the category of definable sets (which identifies with
the category Def(M) of definable sets in some/any model M
of T when T is complete).



Tea

» As in geometry and algebra, quotient objects X/E where X is
a definable set and E a definable equivalence relation on X,
are important, and the M“? and T°? constructions provide a
formalism for treating such quotient objects on a par with
definable sets.

» (Assume T complete.) For each formula ¢(Z, %) of L which
defines an equivalence relation on a given finite Cartesian
product of sorts s; X .. X s, in some (every) model of 7', add a
new sort sy, a function symbol f4 from s1 x .. X s, to s4, and
an axiom saying that f, is onto and ¢(Z,7) iff f4(Z) = f4(7).

> We obtain another complete theory T°? in many-sorted
language L°?, which has so-called “elimination of imaginaries”:
for any definable equivalence relation E(Z,7) there is a
definable function f from the Z sort to another sort such that
E(z,9) iff f(z) = /(7).

» T° and T are essentially the same, for example have same
categories of models and definable sets.



Relative QF and E1

» The concrete analysis of a concrete (i.e. specific) theory T’
entails understanding the category Def(T¢?), and here
relative QFE and ET (elimination of imaginaries) are useful.

» Relative QF entails identifying a class F' of formulas with low
quantifier-complexity such that every formula is equivalent to
one in F' (modulo T').

» For example relative QF with respect to the class of
quantifier-free formulas is precisely quantifier elimination, and
relative QF with respect to the class of existential formulas is
model-completeness.

> Likewise relative I entails specifying a tractable collection of
“imaginary” sorts so that adjoining these sorts suffices to
obtain elimination of imaginaries.

» The best of all possible worlds happens with AC'F' and
RCOF which have both QF and EI in the one sorted
language of rings. Relative QF and E1 results are a big
theme in the study of valued fields.



Type spaces |

» Fix a model M of T, a set of parameters A from M, and an
A-definable set X in M (equivalently a formula ¢(x) with
parameters from A). such that X = ¢(M)).

» The collection of ultrafilters on the Boolean algebra of
A-definable in M, subsets of X forms a profinite (i.e. Stone)
space, which we denote Sx(A) and call the space of complete
types over A concentrating on X.

» When A is M itself, then Sx (M) can be viewed as a
compactification of X. (How?, Why?)

» All this is a commonplace, mathematically speaking, but what
logic brings to the table, via the compactness theorem, is the
existence of an elementary extension M’ of M in which all
p € Sx (M) are realized (even as X varies).

» (Meaning of a realization of an ultrafiliter p) There is a € X’
(the interpretation in M’ of the formula defining X in M),
such that for all definable Y C X, a € Y/ iff Y € p (with
functorial notation). Makes sense for set theory too.



Type spaces Il

» We can iterate, namely find an elementary extension M" of M
in which all complete types over M’ are realized. Continuing
this procedure roughly yields a “saturated” model of 7'

» More precisely a model M of T is x-saturated if every
complete type over an elementary substructure of M of
cardinality < k is realizede in M. And M is saturated if it is
cardinality of M saturated.

» Saturated models M of (complete) T are important for
various reasons, their uniqueness, “homogeneity” and the fact
that any model of T of cardinality < |M| is elementarily
embeddable in M. They exist, modulo some (eliminable)
set-theoretic assumptions.

» Given a complete theory T, the accepted practice is to work
inside a (sufficientlly) saturated model of T', sometimes called
a monster model.



Families

» A lot of definitions and dichotomies in model theory, have to
do with the behaviour of L-formulas of the form ¢(z,y) in
models of T'. The notation means that the free variables of
the formula ¢ are partitioned into disjoint tuples = and y.

» Given a model M of T' we can view the formula ¢(x,y) in
several ways. Let X,Y denote the (products of) sorts in M
corresponding to the variables z, y (which are assumed to be
tuples).

» 1) First we can “interpret” ¢(x,y) as the family
{¢(z,b)(M) : b € Y} of definable subsets of X, and dually
the family {¢(a,y)(M) : a € X} of definable subsets of Y.
These are both what we call definable families of definable
sets. This interpretation has a geometric flavour; behaviour of
fibres under a fibration.

» 2) Secondly (and naively), as the bipartite graph (X,Y, R)
defined by ¢(x,y) (so R = ¢(M)). This has a combinatorial
flavour, which will be elaborated on further.



» And 3) as the collection of continuous {0, 1}-valued functions
fo on Sx(M), for b € Y, where f(p(x)) is the truth value of
¢(x,b) at p, i.e. fr(p) =1 if ¢(x,b) € p and 0 otherwise.
This makes the connection with function theory (or functional
analysis).

> ¢(x,y) is stable in M if there do not exist a;, b; in M for
i < w such that M = ¢(a;, b)) iff i <.

» And ¢(x,y) is stable for T if it is stable in every model of T
(equivalently, by compactness there is a greatest k < w such
that for some model M of T there are a;, b;, < k such that
M = ¢(as, by) iff © < ).

» It turns out that basic theorems of stability were proved by
Grothendieck in his thesis. In particular that ¢(z,y) is stable
in M iff any f: Sx(M) — {0,1} which is in the closure of
{fp: b €Y} (in the pointwise topology) is itself continuous.



The NIP notion appeared independently in model theory
(Shelah), learning theory (Vapnik-Chervonenkis), and function
theory (Bourgain, Fremlin, Talagrand).

Define ¢(x,y) has NIP in M if there do not exist a; € M for
i < w and by in some fixed elementary extension N of M for
all J C w such that N |= ¢(a;,by) iff i € J.

o¢(x,y) has NIP for T if it has NIP in all models of T,
which is again equivalent to some finite bound

(V C-dimension) on sets {a; : ¢ € I} in models of T" which can
be “shattered” by ¢.

BFT proved (in effect) among other things that for M and T’
countable, ¢(x,y) has NIP in M iff any f: Sx (M) — {0,1}
which is in the closure of {f;, : b € Y}, is Borel.

So ¢(x,y) stable in M implies ¢(z,y) NIP in M for M,T
countable, and it is in fact true for arbitrary M, T.



» The theory T is said to be stable if every L-formula ¢(z,vy) is
stable for T". Likewise for NIP.

» The motivation for introducing these notions in model theory
(by Shelah) was | guess internal to the subject; classification
of first order theories, namely finding meaningful dividing
lines, identification of theories with “few models” in arbitrarily
large cardinals, understanding of (in)stability, etc.

» It turned out that these (and other) notions capture model
theoretic properties of rather fundamental mathematical
structures: algebraically closed and differentially closed
(differential) fields are stable; the reals, p-adics, and
algebraically closed valued fields are NIP (i.e. their first order
theories are).

» And some of the themes of this program concern how these

model theoretic ideas shed light on combinatorics and valued
fields.



Bipartite graphs and Ramsey |

» We look at interpretation 2) of the formula ¢(z,y) and the
structure M i.e. the graph (X,Y, R) where R is ¢(M), and
we make some trivial observations in the context of types
some of which will later be generalized to measures.

» Note that any p(x) € Sx (M) can be considered as (in fact is)
a {0, 1}-valued finitely additive measure on the Boolean
algebra of definable (in M) subsets of X: Large = measure 1
= in the type p. Likewise for ¢ € Sy (M).

» A Ramsey-style question, is: given p(z),q(y), are there large
(definable) subsets X of X, Yy of Y which are homogeneous
for R namely such that either Xy x Yy C R or Xg x Yy C R°
(the complement of R).

» In general, nothing can be said, but we have the following:



Bipartite graphs and Ramsey I

Lemma 1

Suppose p(x) U q(y) extends to a unique type r(z,y) € Sxxy (M),
or as we say: p(x) and q(y) are weakly orthogonal. Then there is
such a large definable homogeneous pair (Xo, Yy) for R.

» The proof of Lemma 0.1 is by compactness.

» Case 1: ¢(z,y) € r(z,y). So by our assumption
p(z)Uq(y) = r(z,y), so by compactness there are
¥(x) € p(z), x(y) € q(y) such that

M = Vavy(d(z) A x(y) = oz, y))-
» Case 2. ~¢(z,y) € r(x,y). The same.



Bipartite graphs, and regularity

> A similar proof yields a “strong regularity theorem” for
(X,Y,R).

Lemma 2
Suppose p(x) is weakly orthogonal to q(y) for all p(z) € Sx (M)

and q(y) € Sy(M). Then we can partition X into definable sets
X1, .., Xin and partition Y into definable sets Y1, .., Y, such that

each pair (X;,Y}) is homogeneous for R.



Keisler measures |

» As mentioned earlier a complete type p € Sx (M) can be
viewed as a {0, 1}-valued finitely additive probability measure
on the Boolean algebra of definable (with parameters) subsets
of X.

» It is thus natural to consider such finitely additive probability
measures with values in the real unit interval [0, 1], and we
call these Keisler measures on X over M (where remember X
is just a definable set in M).

» If M is a "very saturated” (sometimes called monster) model
we say “global Keisler measure”.

> A Keisler measure on X over M induces and is induced by, a
(unique) regular Borel probability measure on the Stone space
Sx(M). In particular;

> A Borel probability measure p on Sx (M), when restricted to
the clopens is precisely a Keisler measure on X over M.
Moreover regularity of u implies that u is determined by its
restriction to clopens.



Keisler measures |l

» Some examples:

» Let L = {E} and T say that E is an equivalence relation with
exactly two classes, both infinite. T' is complete, stable, has
quantifier elimination, and has a unique countable model M,
say.

» Let p assign 1/2 to each E-class in M, and 0 to each
singleton {a} in M. Then p is the unique Aut(M)-invariant
Keisler measure on the universe over M.

» Another example: Let X be definable in M, let A be a finite
subset of X, and let 4 be the Keisler measure which assigns
Y N A|/|A| to Y for any M-definable subset Y of X.

» We call this a counting measure.



Keisler measures |l

» Another example. Let M = (R, +, X, <) and I be the unit
interval [0, 1] (a definable set in M). We have Lebesgue
measure \j on 1.

» As all definable (in M) subsets of I are finite unions of
intervals and points, they are A;-measurable, whereby Af
induces a Keisler measure on I over M, which we also call A;.

» It is clear that if M < M’ and p is an extension of A\; to a
Keisler measure on I(M') over M’ then p is forced to assign 0
to any infinitesimal interval, whereby i is uniquely determined.

> Likewise for Lebesgue measure on the unit cube I™ in R™



Smooth measures |

» Back in the general environment and motivated by the last
example, we define a Keisler measure  on X over M to be
smooth if  has a unique extension to a Keisler measure on
X (M') over M’ for any elementary extension M’ of M.

» A smooth type p(z) € Sx (M) is precisely a realized type, i.e.
of the form tp(a/M) for some a € X (M).

» Any (maybe infinite) weighted average of realized types is
smooth, and if T is stable these are precisely the smooth
Keisler measures. The example coming from Lebesgue
measure on the previous slide is smooth but is not an average
of realized types.

» The above definition of smoothness of i can be restated as:
for any q(y) € Sy (M), u, and ¢(y) are weakly orthogonal (in
the model-theoretic sense), namely p, U ¢(y) extends to a
unique Keisler measure on X x Y over M.



Smooth measures ||

» The compactness theorem also applies to Keisler measures in
the following form:

» An assignment (of numbers between 0 and 1) to formulas
¢(x) over M is consistent, namely extends to a Keisler
measure on x-space over M, iff every finite subassignment is
consistent, and the latter amounts to the formal consistency
of assigning numbers to a finite atomic Boolean algebra of
formulas.

» Using compactness one obtains that if x(z) is a smooth
measure on X over M and v(y) is an Keisler measure on Y’
over M, then u(x) Ur(y) extends to a unique separated
Keisler measure w(z,y) on X x Y over M. Where separated
means that w(z,y) is the “product measure” on rectangles
XO X Yb

> Another use of compactness gives an analogue of Lemma 0.1



Smooth measures Il

Lemma 3

Let ¢(x,y,),M, (X,Y, R) be as earlier. Let ji(z) be a smooth
Keisler measure on X over M, and v(y) any Keisler measure on' Y
over M. Then there is a “large” homogeneous pair (Xo, Yy) for R,
where large means that the definable sets Xg, Yy have positive
[-measure, v-measure respectively.

» Sketch proof: Let w(z,y) be the unique separated amalgam
of u(x) and v(y).

> If w(¢(x,y)) > 0. Then by compactness (as mentioned
earlier) there are finite subassignments po(x), vo(y) together
with product assignments to rectangles, which are
incompatible with assigning 0 to ¢(x,y). This forces there to
be formulas ¥ (x), x(y) with © and v-measures positive such
that M E VaVy(¢v(x) A x(y) = ¢(x,y)). Likewise if
w(_'(b(may)) > 0.



Pseudofiniteness |

» A (possibly incomplete) L-theory T is said to be pseudofinite
if every sentence consistent with 7" is true in some finite
L-structure (i.e. where all sorts are finite).

» One can relativise to a formula ¢(z), by saying that ¢(z) is
pseudofinite in 7" if ever sentence consistent with 7" is true in
an L-structure M where ¢(M) is finite.

> Likewise we can talk about a structure M being pseudofinite,
or a definable set X in a structure M being pseudofinite.

> If for example C is a class of finite L-structures then
T = Th(C) is pseudofinite and information about arbitrary
models of 7" will routinely give (asymptotic) information
about members of C. This is one way in which model theory
contributes to the combinatorics of finite graphs and other
structures.



Pseudofiniteness I

» Assume that the L-structure M is sufficiently saturated and
X is a definable set in M which is pseudofinite in the sense
above.

» Then we can expand M (adding in particular new sorts) to a
saturated model V* of all or some of set theory, where we
have in particular the nonstandard natural numbers N*, reals
R*, and the cardinality map | — | assigning an element of N*
to X and each of its definable (in M, even in V*) subsets.

» For any definable subset Y of X, |Y'|/|X]| is a nonstandard
real number between 0 and 1, and define u(Y’) to be its
standard part, namely an actual real number in [0, 1].

» Then u is a Keisler measure on X over M, which we call the
(normalized) counting measure on the pseudofinite set X.

» This construction is pretty basic, but surprisingly, goes a long
way, as in Hrushovski's approximate subgroups work.



Pseudofiniteness ||

> Is there anything special we can say about such measures (on
pseudofinite sets)?

» It turns out that when T is NIP, then transferring some
results on sets systems on finite sets with bounded
V C-dimension yields:

» for any L-formula ¢(z,y) and € > 0 there is a finite set
ai, .., a, of elements of X such that for any b, u(¢(x,b)) is
within e of the proportion of the a; which satisfy ¢(x,b) in M.

» This property of the measure p goes under various names;
generically stable, FIM, FAP(?), ... and is implied by, but
does not in general imply, smoothness.

» For certain NIP theories (distal) which will be discussed later
in the course, we do obtain smoothness, and so Lemma 0.3
will have important consequences for suitable families of finite
graphs (such as strong Erdos-Hajnal).



Continuous logic |

> | am here using the expression “continuous logic” as a
descriptive term rather than a brand name. So | refer to the
circle of ideas originating in Chang and Keisler's Continuous
Model Theory, 1966 (or maybe originating earlier), a rather
infuential more recent formalism of which was developed by
Ben Yaacov, Henson et al.

» We have discussed the generalization of types ({0, 1} valued
finitely additive probability measures on a Boolean algebra of
definable sets) to Keisler measures ([0, 1] valued such
measures).

> It is natural to ask about analogous generalizations of the
more basic notion of formula.

» Now a formula ¢(z) with parameters in a model M
determines, and is determined by, a continuous function from
the type space S;(M) to {0,1}.



Continuous logic |l

» Let C be a topological space (always Hausdorff). Then by a
(C-valued formula over M we mean a continuous function
from some S, (M) to C' (where z is a tuple of variables). As
the image is compact we may assume C' to be compact.

» And by a C'L (continuous logic)-formula over M we mean an
R-valued formula over M.

» If N is an elementary extension of M (maybe M itself, or the
monster model) then a C-valued formula f over M
determines (and is determined by) a function which we also
call f from the elements of N in the z-sort to C, by the
formula f(a) = f(tp(a/M)).

» Such f is what have previously called a definable function
from the z-sort of N to C, which includes such maps as from

G to G/G.



Continuous logic Il

» The basic results on definability extend to this environment,
such as

» a CL-formula f on the z-sort over a saturated model M is
Aut(M /M) invariant (for M a small elementary substructure
of M), iff f is induced by a continuous function from S (M)
to R.

> Likewise stability and NIP of f(z,y) in a model M or in T’
make sense and are in fact the appropriate context for the
theorems of Grothendieck and Bourgain-Fremlin-Talagrand
discussed earlier.

» These notions should be appearing later in the semester, in
either courses, seminars, or invited talks.



