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The three lectures

Introduction to basic model theory

Focus on Definability

More advanced topics: Stability, forking, ranks, NIP and VC
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Structures

A structureM consists of the following:

A set M, the universe or domain ofM

A collection {fi : i ∈ I} of functions fi : M`i → M, of arity
`i ∈ N

A collection {Rj : j ∈ J} of relations Rj ⊆ Mmj , of arity
mj ∈ N

A collection {ck : k ∈ K} of distinguished elements of M,
called constants

Note: the universe of a structure can be multisorted, i.e., can
consist of the union of disjoint sets, or sorts.
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Some Examples

Undirected graphs (V ,E) where V is the set of vertices
and E is an irreflexive, symmetric binary relation on V

Groups (G, ◦,e) where ◦ is a binary operation and e is the
identity

The field (C,+, ·,0,1) of complex numbers

The ordered real exponential field (R,+, ·,0,1, <, exp)
where exp is the exponential function.

Valued fields (K , Γ, v) as two-sorted structures where K is
a field equipped with its field structure, Γ is an ordered
abelian group with its structure, and v : K ∗ → Γ is the
valuation map.
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What makes model theory distinctive?

Model theory analyzes structures and classes of structures
through the prism of first order logic.

There are powerful tools and concepts available.
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Languages

A language L consists of the following:

A collection {fi : i ∈ I} of function symbols of prescribed
arity `i ∈ N

A collection {Rj : j ∈ J} of relation symbols of prescribed
arity mj ∈ N

A collection {ck : k ∈ K} of constant symbols.

There are also (tacitly) an infinite supply of variables and the
equality symbol =.
The symbols in a language are interpreted by the functions,
relations, and constants in structures. Either structures or
languages can come first.
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(First-order) L Formulas

Terms t are formal compositions of function symbols,
constant symbols, and variables

basic (or atomic) formulas have the form t1 = t2 or
R(t1, . . . , tn) for n-ary relation symbols R

If ϕ and ψ are formulas, then so are ¬ϕ and ϕ ∧ ψ
If ϕ is a formula, then so is ∃vϕ

As usual, ¬(¬ϕ ∧ ¬ψ) abbreviates ϕ ∨ ψ and ∀vϕ is an
abbreviation for ¬∃v¬ϕ
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Satisfaction

Given an L-structureM, a term t whose variables are among
v1, . . . , vk , and a1, . . . ,ak ∈ M, tM[a1, . . . ,ak ] ∈ M by
interpreting the function and constant symbols in t by the
corresponding functions and constants inM, with ai
substituted for vi for i = 1, . . . , k .
Then the truth (or satisfaction) inM of basic formulas t1 = t2 or
R(t1, . . . , tn) is defined in the obvious way. For example, if the
variables appearing in R(t1, . . . , tn) are among v1, . . . , vk , and
a1, . . . ,ak ∈ M then R(t1, . . . , tn)[a1, . . . ,ak ] is true inM if

(t1[a1, . . . ,ak ], . . . , tn[a1, . . . ,ak ]) ∈ RM ⊆ Mn.
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Satisfaction (continued)

A variable v is free in a formula if it is not bound to a quantifier.
For a formula ϕ whose free variables are among v1, . . . , vk and
a1, . . . ,ak ∈ M, write

M |= ϕ[a1, . . . ,ak ]

forM satisfies ϕ with ai substituted for vi for i = 1, . . . , k , and
define satisfaction recursively in the obvious way for ¬ψ, θ ∧ ψ,
and ∃vψ.
A sentence is a formula with no free variables, and thus is just
true or false in a structure.
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Caution

Formulas are finite in length, so no infinitely long
conjunctions or disjunctions.

Quantification is allowed only over elements of the
universe of a structure.
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Definable sets and functions

LetM be an L-structure and ϕ a formula whose free variables
are v1, . . . , vk and w1, . . . ,w`. Let b1, . . . ,b` ∈ M be
parameters. The set defined by ϕ and b̄ inM is

ϕ(Mk , b̄); = {ā ∈ Mk :M |= ϕ[ā, b̄]}.

A function f : Mk → M is definable if its graph is a definable
subset of Mk+1.
If the parameters b̄ are all from A ⊆ M, then the set is said to
be A-definable, and if A = ∅ then it is called ∅-definable.
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We also obtain (uniformly) definable families of definable sets

{ϕ(Mk , b̄) : b̄ ∈ M`}

The b̄ can range over definable sets as well.

Note: the same set can be defined by different formulas.

The definable sets of a structure can be characterized by
simple set theoretic operations, e.g., sets defined by
conjunctions correspond to intersections of definable sets,
negations to complements, and existential quantifications to
coordinate projections.
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Some Examples

Fix k ∈ N. In a graph (V ,E) the set of vertices of degree
≤ k and the set of cliques of size ≤ k are ∅-definable.

The order < on R is definable in (R,+,−, ·,0,1).

Constructible sets in C

Zp for p 6= 2 can be defined in (Qp,+,−, ·,0,1) by
∃y y2 = px2 + 1.

In a structure (R,+,−, ·,0,1, <, f ), where f : Rk → R, the
set of points at which f is continuous or even differentiable
is definable in the structure.
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Understanding definable sets

Nestings and alternations of quantifiers make it difficult.
Various versions of “quantifier simplification” help

Quantifier elimination: definable sets have quantifier-free
definitions.

Model completeness: definable sets have existential
definitions.

Choice of language is important. More on this in Lecture 2.

Gödel phenomenon: (Z,+, ·)
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Theories

An L-theory is a set T of L-sentences. A theory T is satisfiable
if there is a structureM |= T .
WriteM |= T ifM |= ϕ for every ϕ ∈ T .
We say ϕ is a logical consequence of T , and write T |= ϕ, if
M |= ϕ wheneverM |= T .
A satisfiable theory T is complete if T |= ϕ or T |= ¬ϕ for every
ϕ.
Say thatM and N are elementarily equivalent,M≡ N , if they
satisfy the same complete set of sentences, so ThM = ThN .
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Some examples

TM = {ϕ :M |= ϕ} is complete.

Let ACF be the theory in the language of fields that
includes the field axioms, and for every n ≥ 1 the sentence

∀v0∀v1 · · · ∀vn ∃x vnxn + vn−1xn−1 + · · ·+ v1x + v0 = 0.

This is not a complete theory but is complete once the
characteristic is specified, ACF0 or ACFp.

Similarly, RCF is the theory consisting of the ordered field
axioms, the axiom that every positive element has a
square root, and the axioms that every odd degree
polynomial has a root.
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In the language of graphs, for each m and n let ϕm,n be the
sentence

∀u1 · · · ∀um ∀v1 · · · ∀vn “the ui ’s and vj ’s are distinct”

→ ∃w
∧
i≤m

wEui ∧
∧
j≤n

¬wEvj .

Then TRado := {ϕm,n} is a complete theory that axiomatizes
the Rado, or Random Graph.
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Completeness Theorem

Proofs can be formalized in first-order logic. They are finite
sequences of formulas that follow certain proof rules.
A theory T is consistent if no contradiction can be formally
derived from T .

Theorem (Gödel’s Completeness Theorem)

Let T be a theory and ϕ a formula. Then T |= ϕ if and only if ϕ
can be formally derived from T . Alternatively, T is satisfiable if
and only if T is consistent.
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Compactness Theorem

A deceptively easy consequence of Completeness, and one of
the most powerful tools in model theory is

Theorem (Compactness Theorem)
A theory T is satisfiable if and only if every finite subset of T is
satisfiable.
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Embeddings and isomorphisms

LetM and N be L-structures. An L-embedding ofM and N is
an injective ε : M → N that preserves the functions, relations
and constants.
If M ⊆ N and ε is the identity, thenM is a substructure of N ,
writtenM⊆ N .
If ε is a bijection, then the structures are isomorphic, and is an
elementary map, that is, all formulas are preserved:

M |= ϕ[ā] if and only if N |= ϕ[ε(ā)], for all ϕ and ā from M.

IfM⊆ N is elementary, writeM≺ N .
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Theorem (Löwenheim-Skolem Theorems)
LetM be an L-structure.

i. For every subset C ⊆ M there is an N ≺M with C ⊆ N
and |N| ≤ max{|C|, |L|,ℵ0|}

ii. If M is infinite, then for every infinite cardinal
κ ≥ max{|M|, |L|}, there is N �M of cardinality κ.
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Types

LetM be an L-structure and A ⊆ M. The language L(A) is
obtained by adjoining new constant symbols for each a ∈ A.

ExpandM to an L(A)-structure by interpreting each new
constant by its corresponding element in A.
Write Th (MA) for the complete theory of all L(A)-sentences.
Example LetM≺ N and let c ∈ N \M (note that c could be a
tuple). Consider

p(c) := {ϕ(x) ∈ L(M) : N |= ϕ[c]}.

We call p(c) the type of c over M.
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More generally, givenM and A ⊆ M, an n-type over A is a
maximal finitely satisfiable inMA set p(x) of L(A)-formulas.
Equivalently, a type over A is a maximal set p(x) of
L(A)-formulas that is consistent with Th (MA).
For x̄ of length n write SMn (A) for the set of all types over A.
If T is a theory, then we write Sn(T ) for the set of n-types of T .
If T is complete, andM |= T , then Sn(T ) is the same as
SMn (∅).
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Saturation

The Compactness Theorem enables us to build “rich”
extensions that realize many types.

Proposition
For every structureM there is an N �M that realizes every
type in SMn (M).

Let κ be an infinite cardinal. A structureM is said to be
κ-saturated all types over every A ⊆ M with |A| < κ are realized
inM.

Proposition
For every κ, every structureM has a κ-saturated elementary
extension.

In general, set theory plays a role.
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Topology

We can give Sn(T ) a topology as follows. For a formula ϕ let

[ϕ] := {p ∈ Sn(T ) : ϕ ∈ p}.

Then the sets [ϕ] form a (clopen) basis for a topology for Sn(T ).
Moreover, by the Compactness Theorem, it is a compact
Hausdorf space (Exercise).
A type p is called isolated if p = [ϕ] for some ϕ.
A countable theory T for which all types are isolated is
interesting: for each n there are just finitely many n-types (in
fact, inequivalent formulas) and up to isomorphism T has a
unique countable model (Ryll-Nardzewski Theorem).
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