Dimension and automorphisms in the differential field of transseries

> MATTHIAS ASCHENBRENNER (joint with LOU VAN DEN DRIES and JORIS VAN DER HOEVEN)

> > UCLA

Transseries

These are formal series $f = \sum_{m} f_{m}m$ where the f_{m} are real coefficients and the m are "transmonomials" such as

$$x^r \ (r \in \mathbb{R}), \quad x^{-\log x}, \quad \mathrm{e}^{x^2 \mathrm{e}^x}, \quad \mathrm{or} \quad \mathrm{e}^{\mathrm{e}^{-x} + \mathrm{e}^{-x^2} + \cdots}.$$

One can get a sense by considering an example like

$$e^{e^{x}+e^{x/2}+e^{x/4}+\cdots}-3e^{x^2}+5x^{\sqrt{2}}-(\log x)^{\pi}+42+x^{-1}+x^{-2}+\cdots+e^{-x}$$

Here think of *x* as positive infinite: $x > \mathbb{R}$. The transmonomials are arranged from left to right in decreasing order.

Formally, the ordered field \mathbb{T} of transseries is an ordered subfield of a HAHN field $\mathbb{R}[[\mathfrak{M}]]$ where $(\mathfrak{M}, \cdot, \preccurlyeq)$ is a certain very large ordered abelian group (of transmonomials).

These HAHN fields come with a natural notion of infinite summation.

- I. A Primer on HAHN Fields
- II. The Differential Field ${\mathbb T}$ of Transseries
- III. Dimension of Definable Sets in $\ensuremath{\mathbb{T}}$
- IV. Strong Automorphisms of $\ensuremath{\mathbb{T}}$

I. A Primer on HAHN Fields

Let $(\mathfrak{M}, \cdot, \preccurlyeq)$ be a multiplicatively written ordered abelian group (of *monomials*). We say that $\mathfrak{S} \subseteq \mathfrak{M}$ is **well-based** if there is no infinite sequence

$$\mathfrak{m}_0 \prec \mathfrak{m}_1 \prec \mathfrak{m}_2 \prec \cdots$$
 in \mathfrak{S} .

We denote a function $f: \mathfrak{M} \to \mathbb{R}$ as a series $\sum_{\mathfrak{m}} f_{\mathfrak{m}}\mathfrak{m}$ where $f_{\mathfrak{m}} = f(\mathfrak{m})$, with **support** supp $f := \{\mathfrak{m} : f_{\mathfrak{m}} \neq 0\}$. Then

 $\mathbb{R}[[\mathfrak{M}]] := \{f \colon \mathfrak{M} \to \mathbb{R} : \text{ supp } f \subseteq \mathfrak{M} \text{ is well-based} \}$

is a subspace of the \mathbb{R} -linear space $\mathbb{R}^{\mathfrak{M}}$. For $0 \neq f \in \mathbb{R}[[\mathfrak{M}]]$ let

 $\mathfrak{d}(f) := \max \operatorname{supp} f$

be the **dominant monomial** of *f*. For $0 \neq f, g \in \mathbb{R}[[\mathfrak{M}]]$ define

$$f \preccurlyeq g \quad : \Longleftrightarrow \quad \mathfrak{d}(f) \preccurlyeq \mathfrak{d}(g).$$

With addition and multiplication of well-based series defined by

$$f + g = \sum_{\mathfrak{m}} (f_{\mathfrak{m}} + g_{\mathfrak{m}}) \mathfrak{m}, \quad f \cdot g = \sum_{\mathfrak{m}} \left(\sum_{\mathfrak{m}_1 \cdot \mathfrak{m}_2 = \mathfrak{m}} f_{\mathfrak{m}_1} \cdot g_{\mathfrak{m}_2} \right) \mathfrak{m},$$

we obtain an $\mathbb{R}\text{-algebra}\ \mathbb{R}[[\mathfrak{M}]].$ Indeed, $\mathbb{R}[[\mathfrak{M}]]$ is a field.

Turn $\mathbb{R}[[\mathfrak{M}]]$ into an ordered field with the ordering satisfying

$$f > 0 \quad \iff \quad f \neq 0 \text{ and } f_{\mathfrak{d}(f)} > 0.$$

The ordered field extension $\mathbb{R}[[\mathfrak{M}]]$ of \mathbb{R} is called a HAHN field.

A family (f_{λ}) in $\mathbb{R}[[\mathfrak{M}]]$ is said to be **summable** if

1
$$\bigcup_{\lambda}$$
 supp f_{λ} is well-based; and

2 for all \mathfrak{m} there are only finitely many λ with $\mathfrak{m} \in \operatorname{supp} f_{\lambda}$.

We then define its sum $f = \sum_{\lambda} f_{\lambda} \in \mathbb{R}[[\mathfrak{M}]]$ by $f_{\mathfrak{m}} = \sum_{\lambda} f_{\lambda,\mathfrak{m}}$.

Examples

Given $f \in \mathbb{R}[[\mathfrak{M}]]$, the family $(f_{\mathfrak{m}}\mathfrak{m})$ is summable with sum f. If $f \prec 1$, then (f^n) is summable with sum $\frac{1}{1-f}$.

This notion of summability has various nice properties (e.g., rearrangement of summation).

The ordered field $\ensuremath{\mathbb{T}}$ is obtained as such a union.

Let $(\mathfrak{M}_i)_{i \in I}$ with $I \neq \emptyset$ be a family of ordered subgroups of \mathfrak{M} satisfying $\mathfrak{M} = \bigcup_i \mathfrak{M}_i$. Assume that (\mathfrak{M}_i) is *directed*:

for all *i*, *j* there is *k* with $\mathfrak{M}_i, \mathfrak{M}_j \subseteq \mathfrak{M}_k$.

We then obtain the ordered subfield

$$\mathcal{K} := \bigcup_{i} \mathbb{R}[[\mathfrak{M}_i]] \subseteq \mathbb{R}[[\mathfrak{M}]].$$

An ordered subgroup \mathfrak{G} of \mathfrak{M} with $\mathbb{R}[[\mathfrak{G}]] \subseteq K$ is a *K*-subgroup of \mathfrak{M} .

A family (f_{λ}) in *K* is **summable** if there exists a *K*-subgroup \mathfrak{G} of \mathfrak{M} such that all $f_{\lambda} \in \mathbb{R}[[\mathfrak{G}]]$ and (f_{λ}) is summable as a family in $\mathbb{R}[[\mathfrak{G}]]$; then $\sum_{\lambda} f_{\lambda}$ is defined as an element of *K*.

Let $\Phi: K \to K$ be \mathbb{R} -linear. We say that Φ is **strongly linear** if for every summable family (f_{λ}) in K the family $(\Phi(f_{\lambda}))$ is summable in K, and $\Phi(\sum_{\lambda} f_{\lambda}) = \sum_{\lambda} \Phi(f_{\lambda})$.

For example, given $g \in K$, the operator $f \mapsto fg$ is strongly linear.

An \mathbb{R} -linear subspace *V* of *K* is **strong** if the sum of each family in *V* which is summable in *K* lies in *V*.

Examples

If Φ is strongly linear, then ker Φ and hence

$$\ker(\Phi - \mathsf{id}_{\mathcal{K}}) = \big\{ f \in \mathcal{K} : \Phi(f) = f \big\}$$

are strong linear subspaces of K.

II. The Differential Field ${\mathbb T}$ of Transseries

An **exponential ordered field** is an ordered field E equipped with an exponentiation, that is, an embedding

$$\exp\colon (E,+,\leqslant)\to (E^>,\,\cdot\,,\leqslant).$$

If $exp(E) = E^{>}$ then we call *E* a logarithmic-exponential ordered field, and denote the inverse of exp by log: $E^{>} \rightarrow E$.

Example

The ordered field \mathbb{R} with exponentiation $r \mapsto e^r$.

We can't turn $\mathbb{R}[[x^{\mathbb{R}}]]$ into a log-exp ordered field. (Here $x^{\mathbb{R}} = \{x^r : r \in \mathbb{R}\}$ is ordered so that $x^r \succeq 1$ iff $r \ge 0$.)

To remedy this, we extend $\mathbb{R}[[x^{\mathbb{R}}]]$ in two steps: first close off under exp to obtain the exponential ordered field \mathbb{T}_{exp} , and then under log to the log-exp ordered field \mathbb{T} .

The log-exp ordered field $\mathbb T$

The result is a directed union $\mathfrak{M}^{\mathsf{LE}} = \bigcup_{i} \mathfrak{M}_{i}$ of ordered abelian groups containing $x^{\mathbb{R}}$ and an exponentiation

 $f \mapsto \exp(f) = e^f$

on the directed union of HAHN fields $\mathbb{T} = \bigcup_{i} \mathbb{R}[[\mathfrak{M}_{i}]].$

How to exponentiate a transseries f?

$$\begin{split} f &= g + c + \varepsilon & \text{where } g := \sum_{1 \prec \mathfrak{m}} f_{\mathfrak{m}} \mathfrak{m}, \, c := f_1, \, \varepsilon \prec 1; \\ \mathrm{e}^f &= \mathrm{e}^g \cdot \mathrm{e}^c \cdot \sum_n \frac{\varepsilon^n}{n!} \quad \left\{ \begin{array}{c} \text{where } \mathrm{e}^g \in \mathfrak{M}, \, \mathrm{e}^c \in \mathbb{R}, \\ \text{and } \left(\frac{\varepsilon^n}{n!} \right) \text{ is summable in } \mathbb{T}. \end{array} \right. \end{split}$$

The story with logarithms is a bit different: taking logarithms may also create transmonomials, such as $\log x$, $\log \log x$, etc.

The exponential ordered field $\ensuremath{\mathbb{T}}$

By construction, $\mathbb T$ does not contain elements of $\mathbb R[[\mathfrak M^{\mathsf{LE}}]]$ like

 $\frac{1}{x} + \frac{1}{e^x} + \frac{1}{e^{e^x}} + \cdots \quad \text{or} \quad \frac{1}{x} + \frac{1}{x \log x} + \frac{1}{x \log \log \log x} + \cdots$

(involving arbitrarily "nested" exponentials or logarithms).

Moreover

- x, e^x, e^{e^x}, \dots is cofinal in \mathbb{T} , and
- x, log x, log log x, ... is coinitial in $\mathbb{T}^{>\mathbb{R}} = \{f \in \mathbb{T} : f > \mathbb{R}\}.$

For $f, g \in \mathbb{T}$ with $g > \mathbb{R}$ we can "substitute g for x in f = f(x)" to obtain $f \circ g = f(g(x))$: there is a unique operation

$$(f,g)\mapsto f\circ g\ :\ \mathbb{T} imes\mathbb{T}^{>\mathbb{R}} o\mathbb{T}$$

such that for all g, the map $f \mapsto f \circ g \colon \mathbb{T} \to \mathbb{T}$ is a strongly linear embedding of exponential ordered fields with $x \circ g = g$.

The set $\mathbb{T}^{>\mathbb{R}}$ equipped with the binary operation \circ is a group.

The differential field $\ensuremath{\mathbb{T}}$

There is a unique strongly linear derivation ∂ on $\mathbb T$ such that

$$\partial(x) = 1$$
 and $\partial(\exp f) = \partial(f) \exp f$ for $f \in \mathbb{T}$.

(Écalle, van den Dries-Macintyre-Marker)

Our main interest is $\ensuremath{\mathbb{T}}$ as a differential field with this derivation.

We write
$$f' = \partial(f)$$
, $f'' = \partial^2(f)$, etc., for $f \in \mathbb{T}$.

Some properties of *∂*

- The constant field of ∂ is $\{f \in \mathbb{T} : f' = 0\} = \mathbb{R}$.
- The Chain Rule holds: if $f \in \mathbb{T}, g \in \mathbb{T}^{>\mathbb{R}}$ then

$$(f \circ g)' = (f' \circ g) \cdot g'.$$

• Every $f \in \mathbb{T}$ has an antiderivative $g = \int f \in \mathbb{T}$.

Model completeness of ${\mathbb T}$

View $\ensuremath{\mathbb{T}}$ as a structure where we single out the primitives

0, 1, +, \cdot , ∂ (derivation), \leq (ordering), \leq (dominance).

Theorem (Ann. of Math. Studies, vol. 195)

 ${\mathbb T}$ is model complete.


```
(The inclusion of \preccurlyeq is necessary.)
```

We also have quantifier elimination for $\mathbb T$ in a natural expansion of the language $\mathcal L$ introduced above.

So we have a basic understanding of definable sets in \mathbb{T} . ("Definable" will always include the possibility of parameters.)

To gain more insight into their geometric-topological nature we introduce a notion of *dimension*.

II. Dimension of Definable Sets in $\ensuremath{\mathbb{T}}$

Topological dimension

We equip \mathbb{T} with the order topology, and each \mathbb{T}^n with the corresponding product topology.

Notation

Given $S \subseteq \mathbb{T}^n$ and a permutation σ of $\{1, \ldots, n\}$ we put

$$S^{\sigma} := \{(y_{\sigma(1)},\ldots,y_{\sigma(n)}): (y_1,\ldots,y_n) \in S\}.$$

For
$$x = (x_1, \ldots, x_n) \in \mathbb{T}^n$$
 and $m \leqslant n$ set $\pi_m(x) := (x_1, \ldots, x_m)$.

Definition

The **dimension** dim *S* of a nonempty definable $S \subseteq \mathbb{T}^n$ is the largest $m \leq n$ such that $\pi_m(S^{\sigma}) \subseteq \mathbb{T}^m$ has nonempty interior, for some permutation σ of $\{1, \ldots, n\}$.

We also declare dim $\emptyset := -\infty$.

Zero-dimensional sets

Let $S \subseteq \mathbb{T}^n$ be definable and nonempty.

Finite sets have dimension 0; but also dim $\mathbb{R}^n = 0$. In fact:

dim $S = 0 \iff S$ is discrete.

The proof of this equivalence uses the full machinery of the proof of the model completeness theorem above, and a differential-algebraic characterization of dimension.

Another consequence of this characterization:

 $\dim S < n \quad \Longleftrightarrow \quad \left\{ \begin{array}{cc} S \subseteq \mathsf{Z}_{\mathbb{T}}(P) \text{ for some nonzero differen-}\\ \text{tial polynomial } P \in \mathbb{T}\{Y_1, \ldots, Y_n\}. \end{array} \right.$

Here
$$Z_{\mathbb{T}}(P) := \{y \in \mathbb{T}^n : P(y) = 0\}.$$

1 dim $(S_1 \cup S_2)$ = max(dim $S_1,$ dim $S_2)$, for definable $S_i \subseteq \mathbb{T}^n$; 2 if $S \subseteq \mathbb{T}^m$ and $f \colon S \to \mathbb{T}^n$ are *A*-definable, then

 $\dim S \geqslant \dim f(S),$

for every $i \in \{0, \ldots, m\}$ the set

$${\mathcal B}(i):=ig\{y\in {\mathbb T}^n: \ {
m dim}\, f^{-1}(y)=iig\}$$

is A-definable, and dim $f^{-1}(B(i)) = i + \dim B(i)$;

3 for nonempty definable $S \subseteq \mathbb{T}^n$ with closure cl(S) we have

 $\dim(\operatorname{cl}(S)\setminus S) < \dim S.$

If $f: \mathbb{T} \to \mathbb{T}$ is semialgebraic then there is some *n* and some $a \in \mathbb{T}$ such that $|f(y)| \leq y^n$ for $y \geq a$ in \mathbb{T} .

Using property **2** we obtain an analogue for arbitrary definable functions:

Proposition

Suppose $f: \mathbb{T} \to \mathbb{T}$ is definable. Then there is some n and some $a \in \mathbb{T}$ such that

 $|f(y)| \leq \exp_n(y)$ for $y \geq a$ in \mathbb{T} .

Here $\exp_0(y) = y$, $\exp_{n+1}(y) = \exp(\exp_n(y))$.

The nature of discrete definable sets

Let $S \subseteq \mathbb{T}^n$ be nonempty definable.

Proposition ("primitive element theorem")

If dim S = 0 then there is an injective map $S \to \mathbb{T}$ definable in the structure (\mathbb{T}, S) .

What more can one say about 0-dimensional S?

The following fact together with a theorem of HERWIG, HRUSHOVSKI, and MACPHERSON gives rise to an answer.

Corollary (byproduct of our model completeness proof)

For each extension $K \subseteq L$ of models of $Th(\mathbb{T})$ having the same constant field and all $P \in K\{Y\}$ we have $Z_K(P) = Z_L(P)$.

The nature of discrete definable sets

Theorem

dim $S = 0 \iff S$ is fiberable by constants.

In our context, "fiberable by constants" (almost) agrees with the following concept:

Definition

- Let $S \subseteq \mathbb{T}^n$ be definable. We say that S is
 - **1** fiberable by constants in 0 steps if S is finite;
 - ② fiberable by constants in r + 1 steps if there is a definable map $f: S \to \mathbb{R}$ such that $f^{-1}(c)$ is fiberable by constants in r steps for every $c \in \mathbb{R}$.

Call *S* **fiberable by constants** if it is fiberable by constants in *r* steps for some $r \in \mathbb{N}$.

Applications, 1

Let $\mathbb{T}^c\subseteq \mathbb{R}[[\mathfrak{M}^{LE}]]$ be the completion of the ordered field $\mathbb{T}.$

Equip \mathbb{T}^c with the unique extension of the derivation ∂ of \mathbb{T} to a continuous derivation on \mathbb{T}^c .

Then $\mathbb{T} \preccurlyeq \mathbb{T}^c$ by our model completeness proof.

Let $\mathcal{L}^2 = \mathcal{L} \cup \{U\}$ where *U* is a new unary relation symbol.

Theorem (heavily using results of FORNASIERO)

The following statements about \mathcal{L}^2 -structures (K, F) axiomatize the complete \mathcal{L}^2 -theory of $(\mathbb{T}^c, \mathbb{T})$:

- $K, F \models \mathsf{Th}(\mathbb{T});$
- $F \neq K$;
- F is dense in K.

Moreover, $Th(\mathbb{T}^c, \mathbb{T})$ is model complete.

Theorem (EULER characteristic)

There is a unique assignment

 $S \mapsto \chi(S): \left\{ \begin{array}{l} \text{discrete definable subsets of } \mathbb{T}^n \\ \text{for } n = 0, 1, 2 \dots \end{array} \right\} \ \to \ \mathbb{Z}$

such that

1
$$\chi(\emptyset) = 0, \, \chi(\{a\}) = 1$$
 for $a \in \mathbb{T}, \, \chi(\mathbb{R}) = -1;$

2 $\chi(S_1 \cup S_2) = \chi(S_1) + \chi(S_2)$ for disjoint discrete $S_i \subseteq \mathbb{T}^n$;

3 if $f: S \to \mathbb{T}^n$ is definable where $S \subseteq \mathbb{T}^m$ is discrete and $e \in \mathbb{Z}$ is such that $\chi(f^{-1}(y)) = e$ for all $y \in f(S)$, then

$$\chi(S) = \boldsymbol{e} \cdot \chi(f(S)).$$

A consequence: no definable subset of \mathbb{T} has order type ω .

III. Strong Automorphisms of $\ensuremath{\mathbb{T}}$

Fiberability by constants in 1 step corresponds to *internality* to \mathbb{R} : *S* is **internal** to \mathbb{R} if there is a definable map $f : \mathbb{R}^m \to \mathbb{T}^n$ (for some *m*) such that $S \subseteq f(\mathbb{R}^m)$.

The discrete definable subset

$$\{re^{sx}: r, s \in \mathbb{R}\} = \{y \in \mathbb{T}: yy'' = (y')^2\}$$

of $\mathbb T$ is fiberable by constants in 2 steps, but can be shown not to be internal to $\mathbb R.$

This exploits the group

 $\Sigma \operatorname{Aut}_{\partial}(\mathbb{T}) := \left\{ \sigma \in \operatorname{Aut}(\mathbb{T}|\mathbb{R}) : \sigma, \sigma^{-1} \text{ both strongly linear, } \sigma \partial = \partial \sigma \right\}$

of strong automorphisms of \mathbb{T} .

Strong automorphisms

Theorem

Let $\alpha \colon \mathbb{T} \to \mathbb{R}$ be an additive map which vanishes on

 $\mathbb{T}_{\preccurlyeq} := \{ f \in \mathbb{T} : f \preccurlyeq 1 \} \quad (= \textit{convex hull of } \mathbb{R} \textit{ in } \mathbb{T}),$

and let $c \in \mathbb{R}$; then there is a unique $\sigma \in \Sigma Aut_{\partial}(\mathbb{T})$ such that

$$\sigma(\mathbf{x}) = \mathbf{x} + \mathbf{c}$$
 and $\sigma(\mathbf{e}^{f}) = \mathbf{e}^{\alpha(f) + \sigma(f)}$ for all $f \in \mathbb{T}$.

Moreover, each strongly linear automorphism of \mathbb{T} arises in this way from a unique pair (α, c) .

Why is this plausible? Let $\sigma \in \Sigma Aut_{\partial}(\mathbb{T})$ and $f \in \mathbb{T}$.

• Both $\sigma(e^{f})$ and $e^{\sigma(f)}$ satisfy $y'/y = \sigma(f')$, so they differ by a positive constant;

• if
$$f \prec 1$$
 then $e^f = \sum_n \frac{f^n}{n!}$ and so $\sigma(e^f) = \sum_n \frac{\sigma(f)^n}{n!} = e^{\sigma(f)}$.

Structure of $\Sigma Aut_{\partial}(\mathbb{T})$

We have the subgroups

$$\mathcal{M} := \{ \sigma : \sigma \circ \exp = \exp \circ \sigma \}$$
 (monodromy group),
$$\mathcal{T} := \{ \sigma : \sigma(x) = x \}$$
 (exponential torus)

of $\Sigma Aut_{\partial}(\mathbb{T})$, with $\Sigma Aut_{\partial}(\mathbb{T}) = \mathcal{T} \rtimes \mathcal{M}$.

Here \mathcal{M} is the image of the embedding $\mathbb{R} \to \Sigma \operatorname{Aut}_{\partial}(\mathbb{T})$ which sends $c \in \mathbb{R}$ to the strong automorphism $f(x) \mapsto f(x + c)$ of \mathbb{T} .

Moreover, ${\mathcal T}$ is the image of the map

$$\mathcal{T} := \left\{ lpha \in \mathsf{Hom}(\mathbb{T}, \mathbb{R}) : \ker lpha \supseteq \mathbb{T}_{\preccurlyeq}
ight\}
ightarrow \mathsf{\SigmaAut}_{\partial}(\mathbb{T})$$

which sends α to $\sigma_{\alpha} \in \mathcal{T}$ with $\sigma_{\alpha}(e^{f}) = e^{\alpha(f) + \sigma_{\alpha}(f)}$ for $f \in \mathbb{T}$.

The group \mathcal{T} is non-abelian: the bijection $\alpha \mapsto \sigma_{\alpha}$ is *not* a group morphism!

Every strongly linear embedding T → T is surjective.
 The inverse of a strongly linear automorphism of T is automatically strongly linear.

We have a decomposition $\mathbb{T}=\mathbb{T}_{\preccurlyeq}\oplus\mathbb{T}_{\succ}$ into $\mathbb{R}\text{-linear}$ subspaces, where

$$\mathbb{T}_{\succ} := \{ f \in \mathbb{T} : \operatorname{supp} f \succ 1 \}.$$

For all $\sigma \in Aut(\mathbb{T})$ we have $\sigma(\mathbb{T}_{\preccurlyeq}) = \mathbb{T}_{\preccurlyeq}$.

3 For $\sigma \in \Sigma \operatorname{Aut}_{\partial}(\mathbb{T})$,

 $\sigma(\mathbb{T}_{\succ}) = \mathbb{T}_{\succ} \iff \sigma(\mathbb{R}^{>}\mathfrak{M}) = \mathbb{R}^{>}\mathfrak{M} \iff \sigma(\ell_{n}) = \ell_{n} \text{ for all } n.$

Here $\ell_0 = x$ and $\ell_{n+1} = \log \ell_n$.

For $F \subseteq \mathbb{T}$ we define the subgroup $\Sigma \operatorname{Aut}_{\partial}(\mathbb{T}|F) := \{ \sigma \in \Sigma \operatorname{Aut}_{\partial}(\mathbb{T}) : \sigma(f) = f \text{ for all } f \in F \}$ of $\Sigma \operatorname{Aut}_{\partial}(\mathbb{T})$. Given $\mathcal{G} \subseteq \Sigma \operatorname{Aut}_{\partial}(\mathbb{T})$ we let $\mathbb{T}^{\mathcal{G}} := \{ f \in \mathbb{T} : \sigma(f) = f \text{ for all } \sigma \in \mathcal{G} \}$

be the **fixed field** of \mathcal{G} , a strong differential subfield of \mathbb{T} with constant field \mathbb{R} .

If $\mathcal{G} \subseteq \Sigma Aut_{\partial}(\mathbb{T})$, then the strong differential subfield $\mathbb{T}^{\mathcal{G}}$ of \mathbb{T} definably closed in \mathbb{T} . This makes it possible to produce many examples of definably closed subsets of \mathbb{T} .

The following differential subfields of \mathbb{T} are fixed fields of suitable subgroups of $\Sigma Aut_{\partial}(\mathbb{T})$, hence definably closed in \mathbb{T} :

$$\mathbb{R}[[e_n^{\mathbb{R}}\cdots e_0^{\mathbb{R}}]], \quad \mathbb{R}[[\ell_0^{\mathbb{R}}\cdots \ell_n^{\mathbb{R}}]], \quad \mathbb{T}_{\mathsf{exp}}, \quad \mathbb{T}_{\mathsf{log}} \quad \mathsf{and} \quad \mathbb{T}_{\mathsf{log}}^{\mathbb{Q}}$$

Here

- $e_0 = \ell_0 = x$ and $e_{n+1} = \exp(e_n)$;
- T_{exp} is the differential field of exponential transseries mentioned earlier;
- *T*_{log} = ⋃_n ℝ[[ℓ₀^ℝ · · · ℓ_n^ℝ]] is the differential field of logarithmic transseries; and
- $\mathbb{T}^{\mathbb{Q}}_{\log}$ its differential subfield $\bigcup_n \mathbb{R}[[\ell_0^{\mathbb{Q}} \cdots \ell_n^{\mathbb{Q}}]].$

Indeed,
$$\mathbb{T}^{\mathbb{Q}}_{\log} = \mathbb{T}^{\mathcal{L}}$$
 for $\mathcal{L} = \{ \sigma \in \Sigma \operatorname{Aut}_{\partial}(\mathbb{T}) : \sigma(\ell_n) = \ell_n \text{ for all } n \}.$

Can one describe in some meaningful way the fixed fields of subgroups \mathcal{G} of $\Sigma Aut_{\partial}(\mathbb{T})$? An answer for $\mathcal{G} \subseteq \mathcal{L}$ (so $\mathbb{T}^{\mathcal{G}} \supseteq \mathbb{T}^{\mathbb{Q}}_{log}$):

Proposition

The fixed fields of subgroups of \mathcal{L} are exactly the strong differential subfields F of \mathbb{T} such that

$$F^{\times} = \mathbb{R}^{\times} \cdot \mathfrak{G} \cdot (1 + F_{\prec})$$

for some divisible subgroup \mathfrak{G} of \mathfrak{M} with $x \in \mathfrak{G}$ and $\log \mathfrak{G} \subseteq F$.

Every $\sigma \in \Sigma Aut_{\partial}(\mathbb{T})$ restricts to a strong automorphism of $\mathbb{T}_{log}^{\mathbb{Q}}$. One can also describe the structure of the fixed fields of subgroups of $\Sigma Aut_{\partial}(\mathbb{T}_{log}^{\mathbb{Q}})$, but this is a bit more involved. ...

Thank you!