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Transseries

These are formal series f = . fum where the £, are real
coefficients and the m are “transmonomials” such as

X" (reR), x'09x X o et e
One can get a sense by considering an example like
e Fe e i 30 L BxV2_(log x)T 424 x4 x 2 e,
Here think of x as positive infinite: x > R. The transmonomials

are arranged from left to right in decreasing order.

Formally, the ordered field T of transseries is an ordered
subfield of a HAHN field R[[99t]] where (9, -, <) is a certain
very large ordered abelian group (of transmonomials).

These HAHN fields come with a natural notion of infinite
summation.
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[. A Primer on HAHN Fields



Well-based series

Let (9, -, <) be a multiplicatively written ordered abelian group
(of monomials). We say that & C 9t is well-based if there is no
infinite sequence

mop <My <Mmop <--- in &.

We denote a function f: 9t — R as a series ), fn.m where
fa = f(m), with support supp f := {m : f, # 0}. Then

R[] := {f: M — R: suppf C M is well-based}
is a subspace of the R-linear space R™. For 0 # f € R[[I]] let
o(f) := maxsupp f
be the dominant monomial of f. For 0 # f, g € R[[91]] define

fg <= of)=<09).



Well-based series

With addition and multiplication of well-based series defined by

f+g =Y (fatgn)m, f-g=Z< > fm1-gm2>m,

m m mq-mo=m
we obtain an R-algebra R[[92t]]. Indeed, R[[91]] is a field.
Turn R[[91]] into an ordered field with the ordering satisfying

f>0 <= f#0andf; >0.

The ordered field extension R[[90t]] of R is called a HAHN field.



Summing well-based series

A family (f,) in R[[907]] is said to be summable if

©® U, supp £, is well-based; and

@ for all m there are only finitely many \ with m € supp f,.
We then define its sum f = )", fA € R[[M]] by fa = >, fim-

Given f € R[[91]], the family (f,m) is summable with sum f.

If f <1, then () is summable with sum 1#;‘

This notion of summability has various nice properties (e.g.,
rearrangement of summation).



Directed unions of HAHN fields

The ordered field T is obtained as such a union.
Let (9;);c; with I £ () be a family of ordered subgroups of 9
satisfying 9t = J; M;. Assume that (91;) is directed:

for all /, j there is k with 90t;, 001; C 9.

We then obtain the ordered subfield

K = UR[[imi]] < R[]

]

An ordered subgroup & of M with R[[&]] C K is a K-subgroup
of M.

A family (f) in K is summable if there exists a K-subgroup &
of M such that all f, € R[[&]] and (f,) is summable as a family
in R[[&]]; then >, f, is defined as an element of K.



Strongly linear maps

Let #: K — K be R-linear. We say that ¢ is strongly linear if
for every summable family (f,) in K the family (®(f,)) is
summable in K, and (Y, f,) = >, ®(f).

For example, given g € K, the operator f — fg is strongly linear.

An R-linear subspace V of K is strong if the sum of each
family in V which is summable in K lies in V.

If & is strongly linear, then ker ® and hence

ker(® —idx) = {f € K : &(f) = f}

are strong linear subspaces of K.



[l. The Differential Field T of Transseries



The log-exp ordered field T

An exponential ordered field is an ordered field E equipped
with an exponentiation, that is, an embedding

exp: (E7+7<) - (E>a a<)

If exp(E) = E~ then we call E a logarithmic-exponential
ordered field, and denote the inverse of exp by log: E~ — E.

The ordered field R with exponentiation r — e’.

We can't turn R[[x®]] into a log-exp ordered field.
(Here x® = {x" : r ¢ R} is ordered so that x" = 1iff r > 0.)

To remedy this, we extend R[[x®]] in two steps: first close off
under exp to obtain the exponential ordered field Teyp, and then
under log to the log-exp ordered field T.



The log-exp ordered field T

The result is a directed union 9'E = |, M; of ordered abelian
groups containing x® and an exponentiation

f— exp(f) =

on the directed union of HAHN fields T = (J; R[[9;]].

How to exponentiate a transseries f?

f=g+c+e where g := > fam,c:=f,e < 1;
1<m
n where e9 € M, e€ € R,
efzeg.eciz€ { ere ev ¢ e” €

n and () is summable in T.
- .

The story with logarithms is a bit different: taking logarithms
may also create transmonomials, such as log x, log log x, etc.



The exponential ordered field T

By construction, T does not contain elements of R[[9t-F]] like

1 1 1 1
?+e7+67+”' or 7+xlogx+xlogxloglogx+"'

(involving arbitrarily “nested” exponentials or logarithms).

Moreover
e x,eX e ... is cofinal in T, and
e x,logx,loglogx, ... is coinitial in T>® = {f € T : f > R}.

For f,g € T with g > R we can “substitute g for x in f = f(x)” to
obtain f o g = f(g(x)): there is a unique operation

(f,9)—~fog : TxT® 5T

such that for all g, the map f — fo g: T — T is a strongly linear
embedding of exponential ordered fields with x o g = g.

The set T>® equipped with the binary operation o is a group.



The differential field T
There is a unique strongly linear derivation 0 on T such that
d(x)=1 and od(expf)=o(f)expfforfeT.

(ECALLE, VAN DEN DRIES-MACINTYRE-MARKER)
Our main interest is T as a differential field with this derivation.
We write f' = a(f), f" = 9?(f), etc., for f € T.

Some properties of 9

e The constant field of 9is {f € T: f' = 0} = R.
e The Chain Rule holds: if f € T, g € T>F then

(fog) =(fog)-d.

e Every f € T has an antiderivative g = [ f € T.



Model completeness of T

View T as a structure where we single out the primitives
0,1, +, -, o (derivation), < (ordering), < (dominance).

Theorem (Ann. of Math. Studies, vol. 195)

T is model complete.

@ (The inclusion of < is necessary.)
We also have quantifier elimination for T in a natural expansion
of the language £ introduced above.

So we have a basic understanding of definable sets in T.
(“Definable” will always include the possibility of parameters.)

To gain more insight into their geometric-topological nature we
introduce a notion of dimension.



[l. Dimension of Definable Sets in T



Topological dimension

We equip T with the order topology, and each T" with the
corresponding product topology.

Notation
Given S C T" and a permutation o of {1,...,n} we put

S7 = {(Vo(t)s-- -+ Vo) : W1,---,¥n) € S}.
For x = (X1,...,Xn) € T" and m < nset mm(x) == (X1,..., Xm)-
Definition

The dimension dim S of a nonempty definable S C T” is the
largest m < n such that 7,(S?) C T has nonempty interior, for
some permutation o of {1,..., n}.

We also declare dim () := —oo.



Zero-dimensional sets

Let S C T" be definable and nonempty.
Finite sets have dimension 0; but also dimR” = 0. In fact:

dmS=0 <« Sisdiscrete.

The proof of this equivalence uses the full machinery of the
proof of the model completeness theorem above, and a
differential-algebraic characterization of dimension.

Another consequence of this characterization:

S C Zy(P) for some nonzero differen-

dmS<n { tial polynomial P € T{Y4,..., Ya}.

Here Zy(P) := {y € T": P(y)=0}.



Some properties of dimension

@ dim(S; U S;) = max(dim Sy,dim Sy), for definable S; C T;
@ ifSCT"and f: S — T" are A-definable, then

dim S > dim £(S),
for every j € {0, ..., m} the set
B(i):={y eT": dimf'(y) =i}

is A-definable, and dim f=1(B(/)) = i + dim B(i);
@ for nonempty definable S C T" with closure cl(S) we have

dim(cl(S)\ S) < dimS.



An application

If f: T — T is semialgebraic then there is some n and some
ac Tsuchthat [f(y)|<y"fory >ainT.

Using property @ we obtain an analogue for arbitrary definable
functions:

Proposition

Suppose f: T — T is definable. Then there is some n and
some a € T such that

1f(y)| < expy(¥) fory > ainT.

Here expy(y) = ¥, €xp,1(y) = exp(exp,(y))-



The nature of discrete definable sets

Let S C T" be nonempty definable.

Proposition (“primitive element theorem”)

Ifdim S = 0 then there is an injective map S — T definable in
the structure (T, S).

What more can one say about 0-dimensional S?

The following fact together with a theorem of HERWIG,
HRUSHOVSKI, and MACPHERSON gives rise to an answer.

Corollary (byproduct of our model completeness proof)

For each extension K C L of models of Th(T) having the same
constant field and all P € K{Y} we have Zx(P) = Z,(P).



The nature of discrete definable sets

Theorem
dmS=0 <= S isfiberable by constants.

In our context, “fiberable by constants” (almost) agrees with the
following concept:

Definition
Let S C T" be definable. We say that S is
@ fiberable by constants in 0 steps if S is finite;

@ fiberable by constants in r + 1 steps if there is a
definable map f: S — R such that f~'(c) is fiberable by
constants in r steps for every ¢ € R.

Call S fiberable by constants if it is fiberable by constants in r
steps for some r € N.



Applications, 1

Let T¢ C R[[9-E]] be the completion of the ordered field T.

Equip T° with the unique extension of the derivation o of T to a
continuous derivation on T°.

Then T < T° by our model completeness proof.

Let £2 = £ U {U} where U is a new unary relation symbol.

Theorem (heavily using results of FORNASIERO)
The following statements about £2-structures (K, F) axiomatize
the complete L£2-theory of (T¢, T):
e K,F = Th(T);
o F 7& K,'
e FisdenseinK.
Moreover, Th(T¢, T) is model complete.



Applications, 2

Theorem (EULER characteristic)

There is a unique assignment

. [ discrete definable subsets of T"
S x(S) {forn:0,1,2... } — L
such that
Q@ «(0)=0,x({a})=1foracT, x(R)=-1;
O \(S1US) =x(S1) + x(S2) for disjoint discrete S; C T";

® iff: S — T" is definable where S C T' js discrete and
e € Z is such that x(f~'(y)) = e for all y € 1(S), then

x(S) = e x(f(5)).

A consequence: no definable subset of T has order type w.



lll. Strong Automorphisms of T



Non-internality to the constants

Fiberability by constants in 1 step corresponds to internality
to R: Sis internal to R if there is a definable map f: R™ — T"
(for some m) such that S C f(R™).

The discrete definable subset
{re*:r,seRy={yeT:y" =()*}

of T is fiberable by constants in 2 steps, but can be shown not
to be internal to R.

This exploits the group
TAuty(T) := {o € Aut(TR) : o, o' both strongly linear, 0d = 9o }

of strong automorphisms of T.



Strong automorphisms

Theorem

Leta: T — R be an additive map which vanishes on
Ts:={feT:f<x1} (=convexhull ofR inT),
and let c € R; then there is a unique o € X Auty(T) such that
o(x)=x+c and o(ef)=eD+0) forallf e T.

Moreover, each strongly linear automorphism of T arises in this
way from a unique pair («, c).
Why is this plausible? Let o € YAuty(T) and f € T.

e Both o(ef) and e7() satisfy y’/y = o(f"), so they differ by a
positive constant;

o iff<1thene’ =3, 2 and so o(ef) = 3, 207 — eol),



Structure of X Auty(T)

We have the subgroups

M:={o:00exp=expoo} (monodromy group),
T :={o:0(x)=x} (exponential torus)
of XAuty(T), with XAuty(T) =T x M.

Here M is the image of the embedding R — X Auty(T) which
sends ¢ € R to the strong automorphism f(x) — f(x + c) of T.

Moreover, T is the image of the map
T := {a € Hom(T,R) : kera D T} — T Auty(T)

which sends a to o, € T with o, (ef) = e*(Ntoalf) for f € T.

@ The group 7T is non-abelian: the bijection o — o,
is not a group morphism!



Some byproducts of the proof

@ Every strongly linear embedding T — T is surjective.

) The inverse of a strongly linear automorphism of T is au-
tomatically strongly linear.

We have a decomposition T = T & T, into R-linear
subspaces, where

Ty :={feT:suppf>1}.
For all o € Aut(T) we have o(T<) = Tx.

<

@®© Foro e TAuty(T),

o(T) =T, < o(R"M)=R"M <= o(ln) = £, forall n.

Here /o = x and ¢, 1 = log ¢p.



A GALOIS connection

For F C T we define the subgroup
YAuty(T|F) := {0 € ZAuty(T) : o(f) = fforall f € F}
of ZAuty(T). Given G C X Aut,y(T) we let
TY :={feT:o(f)=fforalloc € G}

be the fixed field of G, a strong differential subfield of T with
constant field R.

If G C T Auty(T), then the strong differential subfield TY of T
definably closed in T. This makes it possible to produce many
examples of definably closed subsets of T.



Definably closed subsets

The following differential subfields of T are fixed fields of
suitable subgroups of XAuty(T), hence definably closed in T:

R[5 - ef]l. R[G5, Tep. Tiog and T

Here
e eg=/{y=xandep, 1 =exp(en);
 Texp is the differential field of exponential transseries
mentioned earlier;
e Tiog = U, R[4 - - - £X]] is the differential field of
logarithmic transseries; and

. ’]1‘%9 its differential subfield UnR[[g(gé .. .59]]_

Indeed, T, = T for £ = {o € YAuty(T) : o(£y) = £, for all n}.



Definably closed subsets

Can one describe in some meaningful way the fixed fields of
subgroups G of TAuty(T)? An answer for G C £ (so TY D T

Iog)'
Proposition

The fixed fields of subgroups of L are exactly the strong
differential subfields F of T such that

for some divisible subgroup & of M with x €  andlog® C F.

Every o € Y Aut,y(T) restricts to a strong automorphism of T%g.
One can also describe the structure of the fixed fields of
subgroups of ZAuta(T%g), but this is a bit more involved. ...



Thank you!



