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Transseries

These are formal series f =
∑

m fmm where the fm are real
coefficients and the m are “transmonomials” such as

x r (r ∈ R), x− log x , ex2ex
, or ee

−x+e−x2
+···.

One can get a sense by considering an example like

ee
x+ex/2+ex/4+···−3ex2

+5x
√

2−(log x)π+42+x−1+x−2+· · ·+e−x .

Here think of x as positive infinite: x > R. The transmonomials
are arranged from left to right in decreasing order.

Formally, the ordered field T of transseries is an ordered
subfield of a HAHN field R[[M]] where (M, · ,4) is a certain
very large ordered abelian group (of transmonomials).

These HAHN fields come with a natural notion of infinite
summation.
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I. A Primer on HAHN Fields



Well-based series

Let (M, · ,4) be a multiplicatively written ordered abelian group
(of monomials). We say that S ⊆M is well-based if there is no
infinite sequence

m0 ≺ m1 ≺ m2 ≺ · · · in S.

We denote a function f : M→ R as a series
∑

m fmm where
fm = f (m), with support supp f := {m : fm 6= 0}. Then

R[[M]] := {f : M→ R : supp f ⊆M is well-based}

is a subspace of the R-linear space RM. For 0 6= f ∈ R[[M]] let

d(f ) := max supp f

be the dominant monomial of f . For 0 6= f ,g ∈ R[[M]] define

f 4 g :⇐⇒ d(f ) 4 d(g).



Well-based series

With addition and multiplication of well-based series defined by

f + g =
∑
m

(fm + gm)m, f · g =
∑
m

( ∑
m1·m2=m

fm1 · gm2

)
m,

we obtain an R-algebra R[[M]]. Indeed, R[[M]] is a field.

Turn R[[M]] into an ordered field with the ordering satisfying

f > 0 ⇐⇒ f 6= 0 and fd(f ) > 0.

The ordered field extension R[[M]] of R is called a HAHN field.



Summing well-based series

A family (fλ) in R[[M]] is said to be summable if
1
⋃
λ supp fλ is well-based; and

2 for all m there are only finitely many λ with m ∈ supp fλ.
We then define its sum f =

∑
λ fλ ∈ R[[M]] by fm =

∑
λ fλ,m.

Examples

Given f ∈ R[[M]], the family (fmm) is summable with sum f .

If f ≺ 1, then (f n) is summable with sum
1

1− f
.

This notion of summability has various nice properties (e.g.,
rearrangement of summation).



Directed unions of HAHN fields

The ordered field T is obtained as such a union.

Let (Mi)i∈I with I 6= ∅ be a family of ordered subgroups of M
satisfying M =

⋃
i Mi . Assume that (Mi) is directed :

for all i , j there is k with Mi ,Mj ⊆Mk .

We then obtain the ordered subfield

K :=
⋃

i

R[[Mi ]] ⊆ R[[M]].

An ordered subgroup G of M with R[[G]] ⊆ K is a K -subgroup
of M.

A family (fλ) in K is summable if there exists a K -subgroup G
of M such that all fλ ∈ R[[G]] and (fλ) is summable as a family
in R[[G]]; then

∑
λ fλ is defined as an element of K .



Strongly linear maps

Let Φ: K → K be R-linear. We say that Φ is strongly linear if
for every summable family (fλ) in K the family

(
Φ(fλ)

)
is

summable in K , and Φ
(∑

λ fλ
)

=
∑

λ Φ(fλ).

For example, given g ∈ K , the operator f 7→ fg is strongly linear.

An R-linear subspace V of K is strong if the sum of each
family in V which is summable in K lies in V .

Examples

If Φ is strongly linear, then ker Φ and hence

ker(Φ− idK ) =
{

f ∈ K : Φ(f ) = f
}

are strong linear subspaces of K .



II. The Differential Field T of Transseries



The log-exp ordered field T

An exponential ordered field is an ordered field E equipped
with an exponentiation, that is, an embedding

exp : (E ,+,6)→ (E>, · ,6).

If exp(E) = E> then we call E a logarithmic-exponential
ordered field, and denote the inverse of exp by log : E> → E .

Example

The ordered field R with exponentiation r 7→ er .

We can’t turn R[[xR]] into a log-exp ordered field.
(Here xR = {x r : r ∈ R} is ordered so that x r < 1 iff r > 0.)

To remedy this, we extend R[[xR]] in two steps: first close off
under exp to obtain the exponential ordered field Texp, and then
under log to the log-exp ordered field T.



The log-exp ordered field T

The result is a directed union MLE =
⋃

i Mi of ordered abelian
groups containing xR and an exponentiation

f 7→ exp(f ) = ef

on the directed union of HAHN fields T =
⋃

i R[[Mi ]].

How to exponentiate a transseries f?

f = g + c + ε where g :=
∑

1≺m
fmm, c := f1, ε ≺ 1;

ef = eg · ec ·
∑

n

εn

n!

{
where eg ∈M, ec ∈ R,
and

(
εn

n!

)
is summable in T.

The story with logarithms is a bit different: taking logarithms
may also create transmonomials, such as log x , log log x , etc.



The exponential ordered field T
By construction, T does not contain elements of R[[MLE]] like

1
x + 1

ex + 1
eex + · · · or 1

x + 1
x log x + 1

x log x log log x + · · ·

(involving arbitrarily “nested” exponentials or logarithms).

Moreover
• x , ex , ee

x
, . . . is cofinal in T, and

• x , log x , log log x , . . . is coinitial in T>R = {f ∈ T : f > R}.

For f ,g ∈ T with g > R we can “substitute g for x in f = f (x)” to
obtain f ◦ g = f (g(x)): there is a unique operation

(f ,g) 7→ f ◦ g : T× T>R → T

such that for all g, the map f 7→ f ◦ g : T→ T is a strongly linear
embedding of exponential ordered fields with x ◦ g = g.

The set T>R equipped with the binary operation ◦ is a group.



The differential field T

There is a unique strongly linear derivation ∂ on T such that

∂(x) = 1 and ∂(exp f ) = ∂(f ) exp f for f ∈ T.

(ÉCALLE, VAN DEN DRIES-MACINTYRE-MARKER)

Our main interest is T as a differential field with this derivation.

We write f ′ = ∂(f ), f ′′ = ∂
2(f ), etc., for f ∈ T.

Some properties of ∂

• The constant field of ∂ is {f ∈ T : f ′ = 0} = R.
• The Chain Rule holds: if f ∈ T, g ∈ T>R then

(f ◦ g)′ = (f ′ ◦ g) · g′.

• Every f ∈ T has an antiderivative g =
∫

f ∈ T.



Model completeness of T

View T as a structure where we single out the primitives

0, 1, +, · , ∂ (derivation), 6 (ordering), 4 (dominance).

Theorem (Ann. of Math. Studies, vol. 195)

T is model complete.

� (The inclusion of 4 is necessary.)

We also have quantifier elimination for T in a natural expansion
of the language L introduced above.

So we have a basic understanding of definable sets in T.
(“Definable” will always include the possibility of parameters.)

To gain more insight into their geometric-topological nature we
introduce a notion of dimension.



II. Dimension of Definable Sets in T



Topological dimension

We equip T with the order topology, and each Tn with the
corresponding product topology.

Notation
Given S ⊆ Tn and a permutation σ of {1, . . . ,n} we put

Sσ :=
{(

yσ(1), . . . , yσ(n)
)

: (y1, . . . , yn) ∈ S
}
.

For x = (x1, . . . , xn) ∈ Tn and m 6 n set πm(x) := (x1, . . . , xm).

Definition
The dimension dim S of a nonempty definable S ⊆ Tn is the
largest m 6 n such that πm(Sσ) ⊆ Tm has nonempty interior, for
some permutation σ of {1, . . . ,n}.

We also declare dim ∅ := −∞.



Zero-dimensional sets

Let S ⊆ Tn be definable and nonempty.

Finite sets have dimension 0; but also dimRn = 0. In fact:

dim S = 0 ⇐⇒ S is discrete.

The proof of this equivalence uses the full machinery of the
proof of the model completeness theorem above, and a
differential-algebraic characterization of dimension.

Another consequence of this characterization:

dim S < n ⇐⇒
{

S ⊆ ZT(P) for some nonzero differen-
tial polynomial P ∈ T{Y1, . . . ,Yn}.

Here ZT(P) :=
{

y ∈ Tn : P(y) = 0
}

.



Some properties of dimension

1 dim(S1 ∪ S2) = max(dim S1,dim S2), for definable Si ⊆ Tn;
2 if S ⊆ Tm and f : S → Tn are A-definable, then

dim S > dim f (S),

for every i ∈ {0, . . . ,m} the set

B(i) :=
{

y ∈ Tn : dim f−1(y) = i
}

is A-definable, and dim f−1(B(i)
)

= i + dim B(i);
3 for nonempty definable S ⊆ Tn with closure cl(S) we have

dim
(
cl(S) \ S

)
< dim S.



An application

If f : T→ T is semialgebraic then there is some n and some
a ∈ T such that |f (y)| 6 yn for y > a in T.

Using property 2 we obtain an analogue for arbitrary definable
functions:

Proposition

Suppose f : T→ T is definable. Then there is some n and
some a ∈ T such that

|f (y)| 6 expn(y) for y > a in T.

Here exp0(y) = y, expn+1(y) = exp(expn(y)).



The nature of discrete definable sets

Let S ⊆ Tn be nonempty definable.

Proposition (“primitive element theorem”)

If dim S = 0 then there is an injective map S → T definable in
the structure (T,S).

What more can one say about 0-dimensional S?

The following fact together with a theorem of HERWIG,
HRUSHOVSKI, and MACPHERSON gives rise to an answer.

Corollary (byproduct of our model completeness proof)

For each extension K ⊆ L of models of Th(T) having the same
constant field and all P ∈ K{Y} we have ZK (P) = ZL(P).



The nature of discrete definable sets

Theorem
dim S = 0 ⇐⇒ S is fiberable by constants.

In our context, “fiberable by constants” (almost) agrees with the
following concept:

Definition
Let S ⊆ Tn be definable. We say that S is

1 fiberable by constants in 0 steps if S is finite;
2 fiberable by constants in r + 1 steps if there is a

definable map f : S → R such that f−1(c) is fiberable by
constants in r steps for every c ∈ R.

Call S fiberable by constants if it is fiberable by constants in r
steps for some r ∈ N.



Applications, 1

Let Tc ⊆ R[[MLE]] be the completion of the ordered field T.

Equip Tc with the unique extension of the derivation ∂ of T to a
continuous derivation on Tc.

Then T 4 Tc by our model completeness proof.

Let L2 = L ∪ {U} where U is a new unary relation symbol.

Theorem (heavily using results of FORNASIERO)

The following statements about L2-structures (K ,F ) axiomatize
the complete L2-theory of (Tc,T):
• K ,F |= Th(T);
• F 6= K ;
• F is dense in K .

Moreover, Th(Tc,T) is model complete.



Applications, 2

Theorem (EULER characteristic)

There is a unique assignment

S 7→ χ(S) :
{discrete definable subsets of Tn

for n = 0,1,2 . . .

}
→ Z

such that
1 χ(∅) = 0, χ({a}) = 1 for a ∈ T, χ(R) = −1;
2 χ(S1 ∪ S2) = χ(S1) + χ(S2) for disjoint discrete Si ⊆ Tn;
3 if f : S → Tn is definable where S ⊆ Tm is discrete and

e ∈ Z is such that χ(f−1(y)) = e for all y ∈ f (S), then

χ(S) = e · χ(f (S)).

A consequence: no definable subset of T has order type ω.



III. Strong Automorphisms of T



Non-internality to the constants

Fiberability by constants in 1 step corresponds to internality
to R: S is internal to R if there is a definable map f : Rm → Tn

(for some m) such that S ⊆ f (Rm).

The discrete definable subset

{resx : r , s ∈ R} =
{

y ∈ T : yy ′′ = (y ′)2}
of T is fiberable by constants in 2 steps, but can be shown not
to be internal to R.

This exploits the group

ΣAut∂(T) :=
{
σ ∈ Aut(T|R) : σ, σ−1 both strongly linear, σ∂ = ∂σ

}
of strong automorphisms of T.



Strong automorphisms

Theorem
Let α : T→ R be an additive map which vanishes on

T4 := {f ∈ T : f 4 1} (= convex hull of R in T),

and let c ∈ R; then there is a unique σ ∈ ΣAut∂(T) such that

σ(x) = x + c and σ(ef ) = eα(f )+σ(f ) for all f ∈ T.

Moreover, each strongly linear automorphism of T arises in this
way from a unique pair (α, c).

Why is this plausible? Let σ ∈ ΣAut∂(T) and f ∈ T.
• Both σ(ef ) and eσ(f ) satisfy y ′/y = σ(f ′), so they differ by a

positive constant;

• if f ≺ 1 then ef =
∑

n
f n

n! and so σ(ef ) =
∑

n
σ(f )n

n! = eσ(f ).



Structure of ΣAut∂(T)

We have the subgroups

M :=
{
σ : σ ◦ exp = exp ◦σ

}
(monodromy group),

T :=
{
σ : σ(x) = x

}
(exponential torus)

of ΣAut∂(T), with ΣAut∂(T) = T oM.

HereM is the image of the embedding R→ ΣAut∂(T) which
sends c ∈ R to the strong automorphism f (x) 7→ f (x + c) of T.

Moreover, T is the image of the map

T :=
{
α ∈ Hom(T,R) : kerα ⊇ T4

}
→ ΣAut∂(T)

which sends α to σα ∈ T with σα(ef ) = eα(f )+σα(f ) for f ∈ T.

� The group T is non-abelian: the bijection α 7→ σα
is not a group morphism!



Some byproducts of the proof

1 Every strongly linear embedding T→ T is surjective.

2
The inverse of a strongly linear automorphism of T is au-
tomatically strongly linear.

We have a decomposition T = T4 ⊕ T� into R-linear
subspaces, where

T� := {f ∈ T : supp f � 1}.

For all σ ∈ Aut(T) we have σ(T4) = T4.

3 For σ ∈ ΣAut∂(T),

σ(T�) = T� ⇐⇒ σ(R>M) = R>M ⇐⇒ σ(`n) = `n for all n.

Here `0 = x and `n+1 = log `n.



A GALOIS connection

For F ⊆ T we define the subgroup

ΣAut∂(T|F ) :=
{
σ ∈ ΣAut∂(T) : σ(f ) = f for all f ∈ F

}
of ΣAut∂(T). Given G ⊆ ΣAut∂(T) we let

TG :=
{

f ∈ T : σ(f ) = f for all σ ∈ G
}

be the fixed field of G, a strong differential subfield of T with
constant field R.

If G ⊆ ΣAut∂(T), then the strong differential subfield TG of T
definably closed in T. This makes it possible to produce many
examples of definably closed subsets of T.



Definably closed subsets

The following differential subfields of T are fixed fields of
suitable subgroups of ΣAut∂(T), hence definably closed in T:

R[[eRn · · · eR0 ]], R[[`R0 · · · `Rn ]], Texp, Tlog and TQ
log.

Here
• e0 = `0 = x and en+1 = exp(en);
• Texp is the differential field of exponential transseries

mentioned earlier;
• Tlog =

⋃
n R[[`R0 · · · `Rn ]] is the differential field of

logarithmic transseries; and
• TQ

log its differential subfield
⋃

n R[[`Q0 · · · `
Q
n ]].

Indeed, TQ
log = TL for L =

{
σ ∈ ΣAut∂(T) : σ(`n) = `n for all n

}
.



Definably closed subsets

Can one describe in some meaningful way the fixed fields of
subgroups G of ΣAut∂(T)? An answer for G ⊆ L (so TG ⊇ TQ

log):

Proposition

The fixed fields of subgroups of L are exactly the strong
differential subfields F of T such that

F× = R× ·G · (1 + F≺)

for some divisible subgroup G of M with x ∈ G and logG ⊆ F.

Every σ ∈ ΣAut∂(T) restricts to a strong automorphism of TQ
log.

One can also describe the structure of the fixed fields of
subgroups of ΣAut∂(TQ

log), but this is a bit more involved. . . .



Thank you!


