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ACVF

ACVF denotes the theory of non-trivially valued algebraically closed fields.

K will always denote a model of ACVF, U < K a monster model.

v : K → ΓK denotes the valuation map, with ΓK the value group.

OK ⊇ mK , kK = OK/mK denote the valuation ring, its maximal ideal, and
the residue field, respectively.

The corresponding sorts are denoted by O ⊇ m, k = O/m, and Γ. Finally,
Γ∞ = Γ ∪ {∞} (with the order topology).

By Robinson’s work, ACVF has QE in a natural language, so the definable
subsets of K n are just the semi-algebraic ones.

Guiding philosophy: Understand, as much as possible, ACVF in terms of

(i) the residue field k, which is a pure ACF, in particular strongly minimal, and

(ii) the value group Γ, which is a pure DOAG, in particular o-minimal.
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Stably dominated types in ACVF

Definition
Let StC be the union of all stable stably embedded C -definable sets.
Set StC (B) :=StC ∩ dcl(BC). A C -definable global type p(x) is called stably
dominated if for any B ⊇ C and a |= p | C such that StC (a) |̂

StC (C)
StC (B)

one has tp(B/StC (a)) ` tp(B/Ca).

Fact (Haskell-Hrushovski-Macpherson)

A definable type p in ACVF is stably dominated if and only if p ⊥ Γ.

Examples

The generic type of O, more generally the generic type ηc,γ of any closed ball
B≥γ(c), is stably dominated, whereas the generic type of an open ball is not.

Any tp(a/K) with td(K(a)/K) = td(kK(a)/kK ) is stably dominated. Such
types are called strongly stably dominated.

Let us illustrate this for the generic of O. Suppose a |= η0,0 | K .
If K ⊆ L, then a |= η0,0 | L if and only res(a) |̂

kK
kL.

If F (X ) =
∑

ciX
i ∈ K [X ], then the value v(F (a)) = min{v(ci )} is

independent of the realization a, so the germ of v ◦ F at η0,0 is constant.
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The valuation topology

K is a topological field, with basis of neighbourhoods given by open balls.
This topology is totally disconnected.

Using the product topology on An(K) = K n, the subspace topology on
closed subvarietes of An and glueing, for any algebraic variety V over K ,
we obtain a topology on V (K), the valuation topology, which is totally
disconnected.

The Berkovich analytification V an
K is a remedy to this topological

behaviour. It embeds V (K) as a dense subspace, and it has nice
topological properties (locally compact, locally path-connected, retracts to
a polyhedron...)
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The Hrushovski-Loeser space V̂ associated to a variety V

Hrushovski and Loeser defined a model-theoretic analogue V̂ of V an
K :

V̂ (B) := set of B-definable stably dominated types on V .

V̂ is C -prodefinable, i.e., a projective limit of C -definable sets.

The topology on V̂ is given (on affine pieces) as the coarsest topology
such that for any regular F , the map f = v ◦ F : V̂ → Γ∞ is continuous.

(Note that for p ∈ V̂ , as p ⊥ Γ, the p-germ of f is constant ≡ γ, so we
may set f (p) := γ.)

If X ⊆ V is definable, we put the subspace topology on X̂ .

X (K) ⊆ X̂ (K) is dense and has the induced topology.

X# := {p ∈ X̂ | p is strongly stably dominated}

V 7→ V̂ is functorial: if f : V →W is a morphism of algebraic varieties,
then f̂ : V̂ → Ŵ is prodefinable and continuous.

Example

Â1 = (A1)# = {ηc,γ | c a field element, γ ∈ Γ∞}.
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Main Theorem of Hrushovski-Loeser

We call generalized interval any finite concatenation of closed intervals in Γ∞.

Theorem (Hrushovski-Loeser)

Let C ⊆ K , let V be a quasiprojective variety over C , and let X ⊆ V be a
C -definable subset. Then there is a C -prodefinable continuous map

ρ : I × X̂ → X̂ ,

with I = [iI , eI ] a generalized interval, such that ρ is a strong deformation
retraction onto some Γ-internal Σ ⊆ X̂ . More precisely, the following (†) hold:

ρ(iI , ·) = idX̂

ρ(γ, ·) �Σ= idΣ for all γ ∈ I

ρ(eI , X̂ ) = Σ = ρ(eI ,X )

ρ(I × X#) ⊆ X#

For any (γ, x) ∈ I × X̂ , one has ρ(eI , ρ(γ, x)) = ρ(eI , x).

Σ is C -definably homeomorphic to a subset of Γw
∞, for w finite C -definable.

Remark
If V is smooth and X ⊆ V is clopen in the valuation topology and bounded in
V , then one may achieve in addition that I = [0,∞], with iI =∞ and eI = 0,
and that Σ embeds C -homeomorphically into Γw .



Definable equivariant retractions Proof of the main result An explicit equivariant retraction in equicharacterisitic 0

Equivariant retractions

Let G be an algebraic group and H ≤ G a K -definable subgroup.

Then H(K) acts prodefinably on Ĥ(K), by translation.

Question: When is there an H-equivariant prodefinable strong deformation
retraction of Ĥ onto a Γ-internal space?

Examples

The standard strong deformation retraction ρ : [0,∞]× Ô → Ô, sending
(γ, ηc,δ) to ηc,min(δ,γ) is (O,+)-equivariant with final image {η0,0}.

The map ρ′ : [0,∞]×Gm → Ĝm, (γ, c) 7→ ηc,v(c)+γ extends uniquely to a
Gm-equivariant strong deformation retraction ρ : [0,∞]× Ĝm → Ĝm, via

ρ(γ, ηc,v(c)+δ) = ηc,v(c)+min(γ,δ) (for c 6= 0, δ ≥ 0).

Its final image is {ηc,v(c) |c 6= 0} = {η0,γ | γ ∈ Γ} ∼= Γ.

Note: In the example of Gm, setting qγ = ρ(γ, 1) = η1,γ , one may check that

ρ(γ, p) = µ̂(qγ ⊗ p),

the convolution of qγ and p. Here, µ denotes the multiplication in Gm.
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The main result

A semiabelian variety is an algebraic group S such that there is an algebraic
torus Gn

m
∼= T ≤ S with S/T = A an abelian variety.

Note that S is commutative and divisible.

Theorem (H.-Hrushovski-Simon 2018+)

Let S be a semiabelian variety defined over C ⊆ K |=ACVF. Then there is a
C -prodefinable S-equivariant strong deformation retraction

ρ : [0,∞]× Ŝ → Ŝ

onto a Γ-internal space Σ ⊆ Ŝ , with ρ satisfying (†).

Remark
The analogous result for Berkovich analytifications of semiabelian varieties is
well known. (It follows from analytic uniformization.) It may also be deduced
from our theorem.
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Stably dominated groups

For G a definable group, p ∈ SG (U) and g ∈ G(U), set

g · p := {ϕ(g−1x , a) | ϕ(x , a) ∈ p}.

A type p ∈ SG (U) is called right generic if there is C small such that g · p
is C -definable for every g ∈ G(U).

G is called (strongly) stably dominated if it admits a (strongly) stably
dominated right generic type.

Example: O is strongly stably dominated, with unique generic type η0,0.

Fact
Suppose G is stably dominated. Then left and right generics coincide, the
generic types form a single G -orbit under translation, and Stab(p) = G 0 = G 00

for any generic type p.

We say G is connected if G = G 0.



Definable equivariant retractions Proof of the main result An explicit equivariant retraction in equicharacterisitic 0

Decomposition of definable abelian groups in ACVF

Are there maximal stably dominated subgroups of definable groups?

Examples

1 O∗n is maximal stably dominated in Gn
m, with quotient Γn.

2 (K ,+) =
⋃
γ∈Γ γO, and there is no maximal one.

Theorem (Hrushovski-Rideau)

Let S be a semiabelian variety defined over C ⊆ K |=ACVF. Then there is
N = N0 ≤ S strongly stably dominated C -definable such that

N is the maximal stably dominated definable subgroup of S , and

S/N = Λ is Γ-internal.

This theorem follows from a general structure result by Hrushovski-Rideau,
describing any abelian group definable in ACVF as an extension of a Γ-internal
group by a limit (indexed by Γ) of stably dominated groups.
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Proof strategy for the main theorem

For S semiabelian, we consider the decomposition from above:

0→ N → S → Λ→ 0

Proof strategy (mimicking the construction in the case of Gm):

Construct a continuous definable path q : [0,∞]→ N#, with q∞ = 0,
q0 = pN (the generic type of N) and qγ the generic of a strongly stably
dominated connected subgroup of N for all γ.

Define ρ : [0,∞]× Ŝ → Ŝ as the following composition:

ρ : [0,∞]× Ŝ
q×id−−−→ Ŝ × Ŝ

⊗−→ Ŝ × S
µ̂−→ Ŝ

Thus, ρ(γ, r) := tp(aγ + b/U), where (aγ , b) |= (qγ ⊗ r) | U.

Show that ρ is continuous (only continuity of ⊗ being an issue).

Then Σ′ = ρ(0, S(U)) = {a + pN |a ∈ S(U)} ∼= S/N = Λ is Γ-internal,
and so by construction Σ = ρ(0, Ŝ(U)) = Σ′ as well, since Σ̂′ = Σ′.
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Main result, final version

Implementing the described proof strategy will yield:

Theorem (H.-Hrushovski-Simon 2018+)

Let S be a semiabelian variety defined over C ⊆ K |=ACVF, and let
0→ N → S → Λ→ 0 be the decomposition from above.

Then there is a C -prodefinable S-equivariant strong deformation retraction

ρ : [0,∞]× Ŝ → Ŝ

onto a Γ-internal space Σ ⊆ Ŝ , which satisfies (†), such that Σ is in definable
bijection with Λ, canonically. Moreover, for each γ ∈ [0,∞], qγ = ρ(γ, 0) is the
generic type of a strongly stably dominated connected definable subgroup of N.
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Continuity of the tensor product

For definable global types p(x) and q(y) we define a global type p ⊗ q via
(a, b) |= p ⊗ q |U :⇔ b |= q |U and a |= p |Ub.

Assuming p and q are both C -definable / stably dominated / strongly
stably dominated, the same holds for p ⊗ q.

If V , W are varieties, ⊗ : V̂ × Ŵ → V̂ ×W is pro-definable.

In general, ⊗ is not continuous: let V = W = A1, ∆ = ∆A1 ⊆ A2,

then ∆̂ ⊆ Â2 is closed, whereas ⊗−1(∆̂) = ∆A1 ⊆ Â1 × Â1 is not.

Fact (Continuity of ⊗)

Let V ,W be varieties, and let Ξ ⊆ V# be a definable Γ-internal subset. Then
⊗ : Ξ× Ŵ → V̂ ×W is continuous.
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First proof

Let N be a connected strongly stably dominated subgroup of an algebraic
group G , such that dim(N) = dim(G) = d .

N is clopen and bounded in G .

N̂ is definably connected.

It follows from the main theorem of Hrushovski-Loeser that there is a
definable path r : [0,∞]→ N# such that r∞ = 0, r0 = pN and
dim(rγ) = d for all γ <∞.

Now assume N is commutative.
Given s ∈ N̂(U), for (a1, b1, . . . , an, bn) |= s⊗2n | U, let

s±n = tp(c/U), where c =
n∑

i=1

(ai − bi ).

For γ ∈ [0,∞], the type qγ = r±d
γ ∈ N# is the generic of a definable

connected strongly stably dominated subgroup of N (by a version of Zilber
indecomposability due to Hrushovski-Rideau).

By continuity of ⊗, γ 7→ qγ is continuous.
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Maximal internal quotients of stably dominated groups

Let T = T eq be a complete NIP theory, and let C ⊆ M |= T .

For D a C -definable stably embedded set, let IntC (D) be the union of all
C -definable D-internal sets.

Proposition (H.-Hrushovski-Simon 2018+)

Let G be a C -prodefinable stably dominated connected group.

There exists a C -prodefinable group gD ⊆ IntC (D) and a C -prodefinable
homomorphism g : G → gD , such that any C -prodefinable
g ′ : G → g′D ⊆ IntC (D) factors through g .

The generic of gD is interdefinable over C with the tuple
dcl(Ca) ∩ IntC (D), where a is a generic of G over C .
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A canonical scale

By [Hrushovski-Tatarsky 2006], for any definable I ≤ (O,+), the set O/I is
stably embedded. (Note that I is of the form γm or γO.)

Proposition (Scale lemma)

We work in ACVF0,0. Let I,J be definable subgroups of O.
1 J ⊆ I if and only if O/I is (almost) O/J -internal.
2 (O/I)d is the maximal O/I-internal quotient of Od .

This fails in positive residue characteristic (due to the Frobenius).

Corollary

Let C(a) ⊆ K |=ACVF0,0 with tp(a/C) strongly stably dominated.

Then there is b from C(a) with b generic in Od over C such that for any γ ∈ Γ
and any Cγ-definable I ≤ O, the following holds:

acl(Cγa) ∩ IntCγ(O/I) ⊆ acl(Cγ, b1/I, . . . , bd/I)
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Linearization

Let G be an algebraic group defined over C ⊆ K |=ACVF0,0, and let
N = N0 be a strongly stably dominated C -definable subgroup of G , with
N not necessarily commutative.

For γ ∈ [0,∞], let Nγ be the connected component of the kernel of the
map g : N → gO/γO.

Let N+
γ be similarly defined, using γm instead of γO.

Lemma

1 Nγ and N+
γ are definable, and Nγ/N

+
γ is stable of Morley rank dim(N). In

particular, Nγ is strongly stably dominated.

2 For any γ, one has
⋃
δ>γ Nδ =

⋃
δ>γ N

+
δ = N+

γ .

Theorem (H.Hrushovski-Simon 2018+)

Let qγ ∈ N# be the generic type of Nγ . Then γ 7→ qγ is a continuous
C -definable path between 1 and the generic of N.
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Application: Relationship between S/S00 and the homotopy type of San

For S semiabelian with N ≤ S maximal stably dominated and Λ = S/N,
we have S/S00 ∼= Λ/Λ00, as N = N00.

Working in an expansion of Γ to a real closed field R, we infer that
Λ ∼= Td(R), and thus Λ/Λ00 = Td(R).

So the definable homotopy type of Ŝ (with Γ expanded to a RCF) is
encoded in S/S00.

If S is defined over a complete K |=ACVF with ΓK ≤ R, San
K and S/S00

(endowed with the logic topology) are homotopy equivalent.
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Stably dominated groups and equivariant contractibility

Corollary (H.-Hrushovski-Simon 2018+)

Let G be an algebraic group defined over C ⊆ K |=ACVF, and N = N0 ≤ G
strongly stably dominated and C -definable. Suppose that

either K is of equicharacteristic 0;

or N is commutative.

Then there is a C -prodefinable N-equivariant strong deformation retraction
ρ : [0,∞]× N̂ → N̂ with final image ρ(0, N̂) = {pN}.

Question

Does the result hold for non-commutative N in any characteristic?

It is plausible that the work of Halevi on stably dominated subgroups of
algebraic groups may lead to a positive answer to this question.


	Definable equivariant retractions
	Proof of the main result
	An explicit equivariant retraction in equicharacterisitic 0

