Algebraically closed fields with several valuation rings

Will Johnson

March 4, 2018

Will	Johnso	n
	5011150	

Let $\mathcal{O}_1, \ldots, \mathcal{O}_n$ be arbitrary valuation rings on $K = K^{alg}$. The structure $(K, \mathcal{O}_1, \ldots, \mathcal{O}_n)$ is...

- Image: ... always NTP₂
- **2** ... NIP only when the \mathcal{O}_i are pairwise comparable.

Let $\mathcal{O}_1, \ldots, \mathcal{O}_n$ be arbitrary valuation rings on $K = K^{alg}$. The structure $(K, \mathcal{O}_1, \ldots, \mathcal{O}_n)$ is...

Image: Image:

2 ... NIP only when the \mathcal{O}_i are pairwise comparable.

Theorem

The (incomplete) theory of n-multi-valued algebraically closed fields is decidable.

Let $\mathcal{O}_1, \ldots, \mathcal{O}_n$ be arbitrary valuation rings on $K = K^{alg}$. The structure $(K, \mathcal{O}_1, \ldots, \mathcal{O}_n)$ is...

... always NTP₂

2 ... NIP only when the \mathcal{O}_i are pairwise comparable.

Theorem

The (incomplete) theory of n-multi-valued algebraically closed fields is decidable.

These results are preliminary, though the case of independent valuations is in my dissertation.

Consider an n-multi-valued field $(K, \mathcal{O}_1, \ldots, \mathcal{O}_n)$. The following are equivalent:

- K is existentially closed among n-multi-valued fields.
- $K = K^{alg}$, each \mathcal{O}_i is non-trivial ($\mathcal{O}_i \neq K$), and $\mathcal{O}_i \mathcal{O}_j = K$ for $i \neq j$.

Consider an n-multi-valued field $(K, \mathcal{O}_1, \ldots, \mathcal{O}_n)$. The following are equivalent:

- K is existentially closed among n-multi-valued fields.
- $K = K^{alg}$, each \mathcal{O}_i is non-trivial ($\mathcal{O}_i \neq K$), and $\mathcal{O}_i \mathcal{O}_j = K$ for $i \neq j$.

So the model companion of

the theory of fields with n valuations.

is

the theory of algebraically closed fields with n pairwise-independent non-trivial valuations.

Independent topologies

Definition

A collection $\mathcal{T}_1, \ldots, \mathcal{T}_n$ of topologies on a set X are *independent* if

$$U_1 \cap \cdots \cup U_n \neq \emptyset$$

whenever U_i is a non-empty \mathcal{T}_i -open. Equivalently, the diagonal embedding

$$X \hookrightarrow \prod_{i=1}^n (X, \mathcal{T}_i)$$

has dense image.

Independent topologies

Definition

A collection $\mathcal{T}_1, \ldots, \mathcal{T}_n$ of topologies on a set X are *independent* if

$$U_1 \cap \cdots \cup U_n \neq \emptyset$$

whenever U_i is a non-empty \mathcal{T}_i -open. Equivalently, the diagonal embedding

$$X \hookrightarrow \prod_{i=1}^n (X, \mathcal{T}_i)$$

has dense image.

Theorem (Stone approximation)

If $\mathcal{T}_1, \ldots, \mathcal{T}_n$ are distinct "valuation-type" topologies on a field K, they are automatically independent.

Will Johnson

- 一司

Lemma

The following are equivalent for a multi-valued field $(K, \mathcal{O}_1, \ldots, \mathcal{O}_n)$ with $K = K^{alg}$ and $\mathcal{O}_i \neq K$:

(a) K is existentially closed

Lemma

The following are equivalent for a multi-valued field $(K, \mathcal{O}_1, \ldots, \mathcal{O}_n)$ with $K = K^{alg}$ and $\mathcal{O}_i \neq K$:

(a) K is existentially closed

(b) For any irreducible variety V/K, the valuation topologies on V(K) are independent.

Lemma

The following are equivalent for a multi-valued field $(K, \mathcal{O}_1, \ldots, \mathcal{O}_n)$ with $K = K^{alg}$ and $\mathcal{O}_i \neq K$:

- (a) K is existentially closed
- (b) For any irreducible variety V/K, the valuation topologies on V(K) are independent.
- (c) The valuation topologies on $\mathbb{A}^1(K) = K^1$ are independent.

Lemma

The following are equivalent for a multi-valued field $(K, \mathcal{O}_1, \ldots, \mathcal{O}_n)$ with $K = K^{alg}$ and $\mathcal{O}_i \neq K$:

- (a) K is existentially closed
- (b) For any irreducible variety V/K, the valuation topologies on V(K) are independent.

(c) The valuation topologies on
$$\mathbb{A}^1(K) = K^1$$
 are independent.

$$(c') \ i \neq j \implies \mathcal{O}_i \mathcal{O}_j = K$$

Lemma

The following are equivalent for a multi-valued field $(K, \mathcal{O}_1, \ldots, \mathcal{O}_n)$ with $K = K^{alg}$ and $\mathcal{O}_i \neq K$:

- (a) K is existentially closed
- (b) For any irreducible variety V/K, the valuation topologies on V(K) are independent.

(c) The valuation topologies on
$$\mathbb{A}^1(K) = K^1$$
 are independent.

$$(\mathsf{c}') \ i \neq j \implies \mathcal{O}_i \mathcal{O}_j = \mathsf{K}$$

(d) For any irreducible curve C/K the valuation topologies on C(K) are independent.

Lemma

The following are equivalent for a multi-valued field $(K, \mathcal{O}_1, \ldots, \mathcal{O}_n)$ with $K = K^{alg}$ and $\mathcal{O}_i \neq K$:

- (a) K is existentially closed
- (b) For any irreducible variety V/K, the valuation topologies on V(K) are independent.

(c) The valuation topologies on
$$\mathbb{A}^1(K) = K^1$$
 are independent.

$$(c') \quad i \neq j \implies \mathcal{O}_i \mathcal{O}_j = K$$

(d) For any irreducible curve C/K the valuation topologies on C(K) are independent.

One shows (c) \Longrightarrow (d) \Longrightarrow (a) \Longrightarrow (b) \Longrightarrow (c) \iff (c').

Will Johnson

Failure of QE and NIP

Consider the theory of algebraically closed fields of characteristic $\neq 2$, with two independent valuations $\mathcal{O}_1, \mathcal{O}_2$. Let \mathfrak{m}_i denote the maximal ideal of \mathcal{O}_i .

- For i = 1, 2, let $s_i : 1 + \mathfrak{m}_i \to 1 + \mathfrak{m}_i$ be the inverse of the squaring map.
- If $x \in 1 + \mathfrak{m}_1 \cap \mathfrak{m}_2$, then $s_1(x) = \pm s_2(x)$.

Failure of QE and NIP

Consider the theory of algebraically closed fields of characteristic $\neq 2$, with two independent valuations $\mathcal{O}_1, \mathcal{O}_2$. Let \mathfrak{m}_i denote the maximal ideal of \mathcal{O}_i .

- For i = 1, 2, let $s_i : 1 + \mathfrak{m}_i \rightarrow 1 + \mathfrak{m}_i$ be the inverse of the squaring map.
- If $x \in 1 + \mathfrak{m}_1 \cap \mathfrak{m}_2$, then $s_1(x) = \pm s_2(x)$.
- Consider $\mathbb{Q}(i)$ with the (1-2i)-adic and (1+2i)-adic valuations. Then

$$s_1(-4) = 2i \neq -2i = s_2(-4)$$

• Consider $\mathbb{Q}(i)$ with the (1-2i)-adic and (1-2i)-adic valuations. Then

$$s_1(-4) = 2i = 2i = s_2(-4)$$

• The substructure generated by -4 is the same in the preceding two examples, so **quantifier elimination fails**.

 If *ϵ*₁, *ϵ*₂, ... is a pairwise-distinct sequence in *m*₁ ∩ *m*₂, it turns out one can always find an *x* such that

$$s_1(x+\epsilon_i)=(-1)^i s_2(x+\epsilon_i)$$

Taking the ϵ_i to be indiscernible, **NIP fails**.

A similar argument works in characteristic 2. Algebraically closed fields with two valuations are never NIP.

Observation (various people)

The following statements are equivalent:

- (a) Every strongly dependent valued field is henselian.
- (b) No strongly dependent field defines two independent valuations.
- (c) No strongly dependent field defines two incomparable valuations.

Conjecturally, all these statements are true. The implication (a) \implies (b) uses the previous slide.

The theory of algebraically closed fields with n independent valuations has good model theory

- Model-completeness
- A weak form of quantifier elimination

The theory of algebraically closed fields with n independent valuations has good model theory

- Model-completeness
- A weak form of quantifier elimination

How do we generalize to arbitrary valuations?

Fix a field K. Let P be the poset of valuation rings on K. Then P has the following properties:

- *P* is a \lor -semilattice, with $\mathcal{O}_1 \lor \mathcal{O}_2 = \mathcal{O}_1 \cdot \mathcal{O}_2$
- P has a maximal element K.
- For any $a \in P$, the set $\{x \in P | x \ge a\}$ is totally ordered.

We will call such a poset a *tree poset*.

Fix a field K. Let P be the poset of valuation rings on K. Then P has the following properties:

- *P* is a \lor -semilattice, with $\mathcal{O}_1 \lor \mathcal{O}_2 = \mathcal{O}_1 \cdot \mathcal{O}_2$
- P has a maximal element K.
- For any $a \in P$, the set $\{x \in P | x \ge a\}$ is totally ordered.

We will call such a poset a *tree poset*.

Remark

If S is a finite subset of P, the upper-bounded \lor -semilattice generated by S is a finite tree poset.

Fix a finite tree poset $(P, \lor, 1)$. Consider structures $(K, \mathcal{O}_a : a \in P)$ consisting of a field K and a valuation ring \mathcal{O}_a for each $a \in P$. Consider the following theories:

- *T*⁰_P asserts that O₁ = K and the map a → O_a is weakly order-preserving.
- *T_P* asserts that *K* = *K^{alg}* and the map *a* → *O_a* is a strictly order-preserving homomorphism of upper-bounded ∨-semilattices.

Then T_P is the model companion of T_P^0 .

Fix a finite tree poset $(P, \lor, 1)$. Consider structures $(K, \mathcal{O}_a : a \in P)$ consisting of a field K and a valuation ring \mathcal{O}_a for each $a \in P$. Consider the following theories:

- *T*⁰_P asserts that O₁ = K and the map a → O_a is weakly order-preserving.
- *T_P* asserts that *K* = *K^{alg}* and the map *a* → *O_a* is a strictly order-preserving homomorphism of upper-bounded ∨-semilattices.

Then T_P is the model companion of T_P^0 .

Remark

Up to definable expansions, every multi-valued algebraically closed field is a model of T_P for appropriately chosen P.

(日) (同) (三) (三)

Fix a finite tree poset $(P, \lor, 1)$.

- Let a_1, \ldots, a_n enumerate the maximal elements of $P \setminus \{1\}$. Let $P_i = \{x \in P | x \le a_i\}.$
- Note that each P_i is a finite tree poset.

Fix a finite tree poset $(P, \lor, 1)$.

- Let a_1, \ldots, a_n enumerate the maximal elements of $P \setminus \{1\}$. Let $P_i = \{x \in P | x \le a_i\}.$
- Note that each P_i is a finite tree poset.
- A model of T_P^0 can be thought of as a field K with valuation rings $\mathcal{O}_1, \ldots, \mathcal{O}_n$, and a $T_{P_i}^0$ structure on the *i*th residue field k_i .

Fix a finite tree poset $(P, \lor, 1)$.

- Let a_1, \ldots, a_n enumerate the maximal elements of $P \setminus \{1\}$. Let $P_i = \{x \in P | x \le a_i\}.$
- Note that each P_i is a finite tree poset.
- A model of T_P^0 can be thought of as a field K with valuation rings $\mathcal{O}_1, \ldots, \mathcal{O}_n$, and a $T_{P_i}^0$ structure on the *i*th residue field k_i .
- Such a structure is a model of T_P if (K, O₁, ..., O_n) is existentially closed and each residue field is a model of T_{Pi}.

Multi-valued fields with residue structure

For i = 1, ..., n let T_i be a model-complete 1-sorted expansion of ACF. Let T be the theory of (n + 1)-sorted structures $(K, k_1, ..., k_n)$, with

- A field structure on K
- A residue map $K \rightarrow k_i$ for each i
- A $(T_i)_{\forall}$ -structure on each k_i .

Multi-valued fields with residue structure

For i = 1, ..., n let T_i be a model-complete 1-sorted expansion of ACF. Let T be the theory of (n + 1)-sorted structures $(K, k_1, ..., k_n)$, with

- A field structure on K
- A residue map $K \rightarrow k_i$ for each i
- A $(T_i)_{\forall}$ -structure on each k_i .

Lemma

A model $(K, k_1, ..., k_n) \models T$ is e.c. exactly when the following conditions hold:

•
$$K = K^{alg}$$

- Each \mathcal{O}_i is non-trivial and the \mathcal{O}_i are pairwise-independent.
- $k_i \models T_i$ for all i.

Fix a finite tree poset P.

Theorem

In the category of models of T_P^0 , the amalgamation problem

 $\begin{array}{c} K_0 \longrightarrow K_1 \\ \downarrow \\ K_2 \end{array}$

can be solved whenever $K_0 = K_0^{alg}$.

Proof of amalgamation

By induction using the following:

Lemma

Let

$$\begin{array}{cccc}
K_0 \longrightarrow K_1 \\
\downarrow & \downarrow \\
K_2 \longrightarrow K_3
\end{array}$$

be a diagram of fields such that $K_0 = K_0^{alg}$ and $K_1 \otimes_{K_0} K_2$ injects into K_3 . Let $\mathcal{O}_1, \mathcal{O}_2$ be valuation rings on K_1, K_2 having the same restriction to K_0 . Then there is \mathcal{O}_3 on K_3 extending \mathcal{O}_1 and \mathcal{O}_2 . Moreover, \mathcal{O}_3 can be chosen so that

$$\mathsf{res}(\mathcal{K}_1) \otimes_{\mathsf{res}(\mathcal{K}_0)} \mathsf{res}(\mathcal{K}_2) \hookrightarrow \mathsf{res}(\mathcal{K}_3)$$

is injective.

Corollary

If $K = K^{alg} \models T_P^0$, then K has the same type when embedded into any model of T_P .

Corollary

If $K = K^{alg} \models T_P^0$, then K has the same type when embedded into any model of T_P .

Corollary

T_P has elimination of quantifiers "up to algebraic covers."

Corollary

If $K = K^{alg} \models T_P^0$, then K has the same type when embedded into any model of T_P .

Corollary

T_P has elimination of quantifiers "up to algebraic covers."

Corollary

The theory T_P is decidable. More generally, the theory of n-multivalued algebraically closed fields is decidable.

Fix $K \models T_P^0$, and let $\varphi(\vec{a})$ be a T_P -formula with parameters $\vec{a} \in K$.

• By almost-q.e., there is a finite normal extension L/K such that, in models of T_P extending K, the truth of $\varphi(\vec{a})$ is determined by how the valuations are extended to L.

Fix $K \models T_P^0$, and let $\varphi(\vec{a})$ be a T_P -formula with parameters $\vec{a} \in K$.

- By almost-q.e., there is a finite normal extension L/K such that, in models of T_P extending K, the truth of $\varphi(\vec{a})$ is determined by how the valuations are extended to L.
- There are finitely many ways to extend the T_P^0 -structure from K to L. Consider the uniform distribution on this set.

Fix $K \models T_P^0$, and let $\varphi(\vec{a})$ be a T_P -formula with parameters $\vec{a} \in K$.

- By almost-q.e., there is a finite normal extension L/K such that, in models of T_P extending K, the truth of $\varphi(\vec{a})$ is determined by how the valuations are extended to L.
- There are finitely many ways to extend the T_P^0 -structure from K to L. Consider the uniform distribution on this set.
- Let $P(\varphi(\vec{a})|K)$ denote the probability that $\varphi(\vec{a})$ holds in a model of T_P extending a *random* extension of the T_P^0 -valuations to *L*.

Fix $K \models T_P^0$, and let $\varphi(\vec{a})$ be a T_P -formula with parameters $\vec{a} \in K$.

- By almost-q.e., there is a finite normal extension L/K such that, in models of T_P extending K, the truth of $\varphi(\vec{a})$ is determined by how the valuations are extended to L.
- There are finitely many ways to extend the T_P^0 -structure from K to L. Consider the uniform distribution on this set.
- Let P(φ(ā)|K) denote the probability that φ(ā) holds in a model of T_P extending a random extension of the T⁰_P-valuations to L.
- This is independent of the choice of *L*.

 P(-|K) defines a measure on the type-space of embeddings of K into models of T_P.

- P(-|K) defines a measure on the type-space of embeddings of K into models of T_P.
- Probable truth is automorphism invariant.

- P(-|K) defines a measure on the type-space of embeddings of K into models of T_P.
- Probable truth is automorphism invariant.
- Let L/K be an extension of models of T_P^0 . Suppose that for every $a \in P$, the extension of residue fields with respect to \mathcal{O}_a is relatively algebraically closed. Then

$$P(arphi(ec{b})|L) = P(arphi(ec{b})|K)$$

for every formula φ and tuple $\vec{b} \in K$.

Fix a finite tree poset P and let N be the number of leaves in the tree.

Theorem

In the theory T_P , the home sort has burden at most 2N. In other words, there does not exist a model $M \models T_P$, a formula $\varphi(x; \vec{y})$, and an array

$$\varphi(x; \vec{b}_{1,1}), \quad \varphi(x; \vec{b}_{1,2}), \quad \varphi(x; \vec{b}_{1,3}), \cdots$$

$$\varphi(x; \vec{b}_{2N+1,1}), \quad \varphi(x; \vec{b}_{2N+1,2}), \quad \varphi(x; \vec{b}_{2N+1,3}), \cdots$$

with 2N + 1 rows and ω columns such that every row is k-inconsistent and every path $\eta : [2N + 1] \rightarrow \omega$ through the rows is consistent.

Fix a finite tree poset P and let N be the number of leaves in the tree.

Theorem

In the theory T_P , the home sort has burden at most 2N. In other words, there does not exist a model $M \models T_P$, a formula $\varphi(x; \vec{y})$, and an array

$$\varphi(x; \vec{b}_{1,1}), \quad \varphi(x; \vec{b}_{1,2}), \quad \varphi(x; \vec{b}_{1,3}), \cdots$$

$$\varphi(x; \vec{b}_{2N+1,1}), \quad \varphi(x; \vec{b}_{2N+1,2}), \quad \varphi(x; \vec{b}_{2N+1,3}), \cdots$$

with 2N + 1 rows and ω columns such that every row is k-inconsistent and every path $\eta : [2N + 1] \rightarrow \omega$ through the rows is consistent.

By a result of Chernikov, it follows that T_P is strong (hence NTP₂).

æ

Image: A matrix

• Extract a mutually indiscernible inp pattern.

- Extract a mutually indiscernible inp pattern.
- Choose an element *a* satisfying the 0th column.

- Extract a mutually indiscernible inp pattern.
- Choose an element *a* satisfying the 0th column.
- Consider each reduct (M, O_p) for p ∈ P. As this reduct is dp-minimal, we can delete a row while making the remaining rows be mutually *a*-indiscernible in the reduct.
 - (See the proof that dp-rank is additive TODO)

- Extract a mutually indiscernible inp pattern.
- Choose an element *a* satisfying the 0th column.
- Consider each reduct (M, O_p) for p ∈ P. As this reduct is dp-minimal, we can delete a row while making the remaining rows be mutually a-indiscernible in the reduct.
 - (See the proof that dp-rank is additive TODO)
- After running through all $p \in P$, at least one row

$$\varphi(x; b_0), \varphi(x; b_1), \ldots$$

remains. This row is *a*-indiscernible in every reduct (M, \mathcal{O}_p) .

• So far: a k-inconsistent sequence of formulas

 $\varphi(x; b_0), \varphi(x; b_1), \ldots$

such that \vec{b} is *a*-indiscernible in every (M, \mathcal{O}_p) . Also, $M \models \varphi(a; b_0)$.

• So far: a k-inconsistent sequence of formulas

 $\varphi(x; b_0), \varphi(x; b_1), \ldots$

such that \vec{b} is *a*-indiscernible in every (M, \mathcal{O}_p) . Also, $M \models \varphi(a; b_0)$.

• Find an algebraically closed base field B containing \vec{b} such that

 $P(\varphi(a; b_i)|aB) = \mu$ not dependent on i

• So far: a k-inconsistent sequence of formulas

 $\varphi(x; b_0), \varphi(x; b_1), \ldots$

such that \vec{b} is *a*-indiscernible in every (M, \mathcal{O}_p) . Also, $M \models \varphi(a; b_0)$.

 \bullet Find an algebraically closed base field B containing \vec{b} such that

 $P(\varphi(a; b_i)|aB) = \mu$ not dependent on i

• $\mu > 0$ because $\varphi(a; b_0)$ is already true.

• So far: a k-inconsistent sequence of formulas

 $\varphi(x; b_0), \varphi(x; b_1), \ldots$

such that \vec{b} is *a*-indiscernible in every (M, \mathcal{O}_p) . Also, $M \models \varphi(a; b_0)$. • Find an algebraically closed base field *B* containing \vec{b} such that

 $P(\varphi(a; b_i)|aB) = \mu$ not dependent on i

- $\mu > 0$ because $\varphi(a; b_0)$ is already true.
- In a random extension of aB, $\sim k$ of the following formulas hold

$$\varphi(a; b_0), \varphi(a; b_1), \ldots, \varphi(a; b_{\lceil k/\mu \rceil})$$

• So far: a k-inconsistent sequence of formulas

 $\varphi(x; b_0), \varphi(x; b_1), \ldots$

such that \vec{b} is *a*-indiscernible in every (M, \mathcal{O}_p) . Also, $M \models \varphi(a; b_0)$. • Find an algebraically closed base field *B* containing \vec{b} such that

 $P(\varphi(a; b_i)|aB) = \mu$ not dependent on i

- $\mu > 0$ because $\varphi(a; b_0)$ is already true.
- In a random extension of aB, $\sim k$ of the following formulas hold

$$\varphi(a; b_0), \varphi(a; b_1), \ldots, \varphi(a; b_{\lceil k/\mu \rceil})$$

• By existential closure of *M*, and amalgamation over *B*, we can pull the situation back into *M*, contradicting *k*-inconsistency.

Will Johnson

Multi-valued fiels

March 4, 2018 21 / 23

• If K is an algebraically closed field with n independent valuations, and if we add an NTP₂ structure onto each residue field, is the resulting structure NTP₂ as a whole?

- If K is an algebraically closed field with n independent valuations, and if we add an NTP₂ structure onto each residue field, is the resulting structure NTP₂ as a whole?
- If K is a dp-minimal field and O₁,..., O_n are arbitrary valuations on K, is (K, O₁,..., O_n) strong?

- If K is an algebraically closed field with n independent valuations, and if we add an NTP₂ structure onto each residue field, is the resulting structure NTP₂ as a whole?
- If K is a dp-minimal field and O₁,..., O_n are arbitrary valuations on K, is (K, O₁,..., O_n) strong?
- If (K,...) is strong and \mathcal{O} is arbitrary, must $(K,...,\mathcal{O})$ be strong?

• Model theory of fields with multiple valuations:

- Lou van den Dries. "Model theory of Fields: Decidability and Bounds for Polynomial Ideals" 1978. Dissertation
- Yuri L. Ershov. Multi-valued Fields. Springer, 2001.
- Will Johnson. "Fun with fields" Chapter 11. 2016. Dissertation.
- Background on dp-rank and burden
 - Artem Chernikov. "Theories without the Tree Property of the Second Kind." *Annals of pure and applied logic.* Feb 2014.
 - Itay Kaplan, Alf Onshuus, and Alexander Usvyatsov. "Additivity of the dp-rank." *Trans. Amer. Math. Soc.* Nov 2013.