Algebraically closed fields with several valuation rings

Will Johnson

March 4, 2018

Main results

Theorem

Let $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$ be arbitrary valuation rings on $K=K^{\text {alg }}$. The structure $\left(K, \mathcal{O}_{1}, \ldots, \mathcal{O}_{n}\right)$ is...
(1) ... always NTP_{2}
(2) ... NIP only when the \mathcal{O}_{i} are pairwise comparable.

Main results

TheoremLet $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$ be arbitrary valuation rings on $K=K^{\text {alg }}$. The structure$\left(K, \mathcal{O}_{1}, \ldots, \mathcal{O}_{n}\right)$ is...
(1) ... always NTP ${ }_{2}$
(2) ... NIP only when the \mathcal{O}_{i} are pairwise comparable.

Theorem

The (incomplete) theory of n-multi-valued algebraically closed fields is decidable.

Main results

TheoremLet $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$ be arbitrary valuation rings on $K=K^{\text {alg }}$. The structure$\left(K, \mathcal{O}_{1}, \ldots, \mathcal{O}_{n}\right)$ is...
(1) ... always NTP ${ }_{2}$
(2) ... NIP only when the \mathcal{O}_{i} are pairwise comparable.

Theorem

The (incomplete) theory of n-multi-valued algebraically closed fields is decidable.

These results are preliminary, though the case of independent valuations is in my dissertation.

E.c. multi-valued fields

Theorem

Consider an n-multi-valued field $\left(K, \mathcal{O}_{1}, \ldots, \mathcal{O}_{n}\right)$. The following are equivalent:

- K is existentially closed among n-multi-valued fields.
- $K=K^{\text {alg }}$, each \mathcal{O}_{i} is non-trivial $\left(\mathcal{O}_{i} \neq K\right)$, and $\mathcal{O}_{i} \mathcal{O}_{j}=K$ for $i \neq j$.

E.c. multi-valued fields

Theorem

Consider an n-multi-valued field $\left(K, \mathcal{O}_{1}, \ldots, \mathcal{O}_{n}\right)$. The following are equivalent:

- K is existentially closed among n-multi-valued fields.
- $K=K^{\text {alg }}$, each \mathcal{O}_{i} is non-trivial $\left(\mathcal{O}_{i} \neq K\right)$, and $\mathcal{O}_{i} \mathcal{O}_{j}=K$ for $i \neq j$.

So the model companion of the theory of fields with n valuations.
is
the theory of algebraically closed fields with n pairwise-independent non-trivial valuations.

Independent topologies

Definition

A collection $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ of topologies on a set X are independent if

$$
U_{1} \cap \cdots U_{n} \neq \emptyset
$$

whenever U_{i} is a non-empty \mathcal{T}_{i}-open. Equivalently, the diagonal embedding

$$
X \hookrightarrow \prod_{i=1}^{n}\left(X, \mathcal{T}_{i}\right)
$$

has dense image.

Independent topologies

Definition

A collection $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ of topologies on a set X are independent if

$$
U_{1} \cap \cdots U_{n} \neq \emptyset
$$

whenever U_{i} is a non-empty \mathcal{T}_{i}-open. Equivalently, the diagonal embedding

$$
X \hookrightarrow \prod_{i=1}^{n}\left(X, \mathcal{T}_{i}\right)
$$

has dense image.

Theorem (Stone approximation)

If $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ are distinct "valuation-type" topologies on a field K, they are automatically independent.

E.c. multi-valued fields

In more detail,

Lemma

The following are equivalent for a multi-valued field $\left(K, \mathcal{O}_{1}, \ldots, \mathcal{O}_{n}\right)$ with $K=K^{\text {alg }}$ and $\mathcal{O}_{i} \neq K$:
(a) K is existentially closed

E.c. multi-valued fields

In more detail,

Lemma

The following are equivalent for a multi-valued field $\left(K, \mathcal{O}_{1}, \ldots, \mathcal{O}_{n}\right)$ with $K=K^{a l g}$ and $\mathcal{O}_{i} \neq K$:
(a) K is existentially closed
(b) For any irreducible variety V / K, the valuation topologies on $V(K)$ are independent.

E.c. multi-valued fields

In more detail,

Lemma

The following are equivalent for a multi-valued field $\left(K, \mathcal{O}_{1}, \ldots, \mathcal{O}_{n}\right)$ with $K=K^{a l g}$ and $\mathcal{O}_{i} \neq K$:
(a) K is existentially closed
(b) For any irreducible variety V / K, the valuation topologies on $V(K)$ are independent.
(c) The valuation topologies on $\mathbb{A}^{1}(K)=K^{1}$ are independent.

E.c. multi-valued fields

In more detail,

Lemma

The following are equivalent for a multi-valued field $\left(K, \mathcal{O}_{1}, \ldots, \mathcal{O}_{n}\right)$ with $K=K^{\text {alg }}$ and $\mathcal{O}_{i} \neq K$:
(a) K is existentially closed
(b) For any irreducible variety V / K, the valuation topologies on $V(K)$ are independent.
(c) The valuation topologies on $\mathbb{A}^{1}(K)=K^{1}$ are independent.
(c') $i \neq j \Longrightarrow \mathcal{O}_{i} \mathcal{O}_{j}=K$

E.c. multi-valued fields

In more detail,

Lemma

The following are equivalent for a multi-valued field $\left(K, \mathcal{O}_{1}, \ldots, \mathcal{O}_{n}\right)$ with $K=K^{\text {alg }}$ and $\mathcal{O}_{i} \neq K$:
(a) K is existentially closed
(b) For any irreducible variety V / K, the valuation topologies on $V(K)$ are independent.
(c) The valuation topologies on $\mathbb{A}^{1}(K)=K^{1}$ are independent.
(c') $i \neq j \Longrightarrow \mathcal{O}_{i} \mathcal{O}_{j}=K$
(d) For any irreducible curve C / K the valuation topologies on $C(K)$ are independent.

E.c. multi-valued fields

In more detail,

Lemma

The following are equivalent for a multi-valued field $\left(K, \mathcal{O}_{1}, \ldots, \mathcal{O}_{n}\right)$ with $K=K^{\text {alg }}$ and $\mathcal{O}_{i} \neq K$:
(a) K is existentially closed
(b) For any irreducible variety V / K, the valuation topologies on $V(K)$ are independent.
(c) The valuation topologies on $\mathbb{A}^{1}(K)=K^{1}$ are independent.
(c') $i \neq j \Longrightarrow \mathcal{O}_{i} \mathcal{O}_{j}=K$
(d) For any irreducible curve C / K the valuation topologies on $C(K)$ are independent.

One shows $(\mathrm{c}) \Longrightarrow(\mathrm{d}) \Longrightarrow(\mathrm{a}) \Longrightarrow(\mathrm{b}) \Longrightarrow(\mathrm{c}) \Longleftrightarrow\left(\mathrm{c}^{\prime}\right)$.

Failure of QE and NIP

Consider the theory of algebraically closed fields of characteristic $\neq 2$, with two independent valuations $\mathcal{O}_{1}, \mathcal{O}_{2}$. Let \mathfrak{m}_{i} denote the maximal ideal of \mathcal{O}_{i}.

- For $i=1,2$, let $s_{i}: 1+\mathfrak{m}_{i} \rightarrow 1+\mathfrak{m}_{i}$ be the inverse of the squaring map.
- If $x \in 1+\mathfrak{m}_{1} \cap \mathfrak{m}_{2}$, then $s_{1}(x)= \pm s_{2}(x)$.

Failure of QE and NIP

Consider the theory of algebraically closed fields of characteristic $\neq 2$, with two independent valuations $\mathcal{O}_{1}, \mathcal{O}_{2}$. Let \mathfrak{m}_{i} denote the maximal ideal of \mathcal{O}_{i}.

- For $i=1,2$, let $s_{i}: 1+\mathfrak{m}_{i} \rightarrow 1+\mathfrak{m}_{i}$ be the inverse of the squaring map.
- If $x \in 1+\mathfrak{m}_{1} \cap \mathfrak{m}_{2}$, then $s_{1}(x)= \pm s_{2}(x)$.
- Consider $\mathbb{Q}(i)$ with the $(1-2 i)$-adic and $(1+2 i)$-adic valuations. Then

$$
s_{1}(-4)=2 i \neq-2 i=s_{2}(-4)
$$

- Consider $\mathbb{Q}(i)$ with the $(1-2 i)$-adic and $(1-2 i)$-adic valuations. Then

$$
s_{1}(-4)=2 i=2 i=s_{2}(-4)
$$

- The substructure generated by -4 is the same in the preceding two examples, so quantifier elimination fails.

Failure of QE and NIP

- If $\epsilon_{1}, \epsilon_{2}, \ldots$ is a pairwise-distinct sequence in $\mathfrak{m}_{1} \cap \mathfrak{m}_{2}$, it turns out one can always find an x such that

$$
s_{1}\left(x+\epsilon_{i}\right)=(-1)^{i} s_{2}\left(x+\epsilon_{i}\right)
$$

Taking the ϵ_{i} to be indiscernible, NIP fails.
A similar argument works in characteristic 2 . Algebraically closed fields with two valuations are never NIP.

Digression: an interesting consequence

Observation (various people)

The following statements are equivalent:
(a) Every strongly dependent valued field is henselian.
(b) No strongly dependent field defines two independent valuations.
(c) No strongly dependent field defines two incomparable valuations.

Conjecturally, all these statements are true. The implication $(\mathrm{a}) \Longrightarrow$ (b) uses the previous slide.

From independent valuations to arbitrary valuations

The theory of algebraically closed fields with n independent valuations has good model theory

- Model-completeness
- A weak form of quantifier elimination

From independent valuations to arbitrary valuations

The theory of algebraically closed fields with n independent valuations has good model theory

- Model-completeness
- A weak form of quantifier elimination

How do we generalize to arbitrary valuations?

The tree of valuation rings on a field

Fix a field K. Let P be the poset of valuation rings on K. Then P has the following properties:

- P is a \vee-semilattice, with $\mathcal{O}_{1} \vee \mathcal{O}_{2}=\mathcal{O}_{1} \cdot \mathcal{O}_{2}$
- P has a maximal element K.
- For any $a \in P$, the set $\{x \in P \mid x \geq a\}$ is totally ordered.

We will call such a poset a tree poset.

The tree of valuation rings on a field

Fix a field K. Let P be the poset of valuation rings on K. Then P has the following properties:

- P is a \vee-semilattice, with $\mathcal{O}_{1} \vee \mathcal{O}_{2}=\mathcal{O}_{1} \cdot \mathcal{O}_{2}$
- P has a maximal element K.
- For any $a \in P$, the set $\{x \in P \mid x \geq a\}$ is totally ordered.

We will call such a poset a tree poset.

Remark

If S is a finite subset of P, the upper-bounded \vee-semilattice generated by S is a finite tree poset.

Prescribing a hierarchy of valuation rings

Theorem

Fix a finite tree poset $(P, \vee, 1)$. Consider structures $\left(K, \mathcal{O}_{a}: a \in P\right)$ consisting of a field K and a valuation ring \mathcal{O}_{a} for each $a \in P$. Consider the following theories:

- T_{P}^{0} asserts that $\mathcal{O}_{1}=K$ and the map $a \mapsto \mathcal{O}_{a}$ is weakly order-preserving.
- T_{P} asserts that $K=K^{\text {alg }}$ and the map $a \mapsto \mathcal{O}_{a}$ is a strictly order-preserving homomorphism of upper-bounded \vee-semilattices.
Then T_{P} is the model companion of T_{P}^{0}.

Prescribing a hierarchy of valuation rings

Theorem

Fix a finite tree poset $(P, \vee, 1)$. Consider structures $\left(K, \mathcal{O}_{a}: a \in P\right)$ consisting of a field K and a valuation ring \mathcal{O}_{a} for each $a \in P$. Consider the following theories:

- T_{P}^{0} asserts that $\mathcal{O}_{1}=K$ and the map $a \mapsto \mathcal{O}_{a}$ is weakly order-preserving.
- T_{P} asserts that $K=K^{\text {alg }}$ and the map $a \mapsto \mathcal{O}_{a}$ is a strictly order-preserving homomorphism of upper-bounded \vee-semilattices.
Then T_{P} is the model companion of T_{P}^{0}.

Remark

Up to definable expansions, every multi-valued algebraically closed field is a model of T_{P} for appropriately chosen P.

Prescribing a hierarchy of valuation rings

Fix a finite tree poset $(P, \vee, 1)$.

- Let a_{1}, \ldots, a_{n} enumerate the maximal elements of $P \backslash\{1\}$. Let $P_{i}=\left\{x \in P \mid x \leq a_{i}\right\}$.
- Note that each P_{i} is a finite tree poset.

Prescribing a hierarchy of valuation rings

Fix a finite tree poset $(P, \vee, 1)$.

- Let a_{1}, \ldots, a_{n} enumerate the maximal elements of $P \backslash\{1\}$. Let $P_{i}=\left\{x \in P \mid x \leq a_{i}\right\}$.
- Note that each P_{i} is a finite tree poset.
- A model of T_{P}^{0} can be thought of as a field K with valuation rings $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$, and a $T_{P_{i}}^{0}$ structure on the i th residue field k_{i}.

Prescribing a hierarchy of valuation rings

Fix a finite tree poset $(P, \vee, 1)$.

- Let a_{1}, \ldots, a_{n} enumerate the maximal elements of $P \backslash\{1\}$. Let $P_{i}=\left\{x \in P \mid x \leq a_{i}\right\}$.
- Note that each P_{i} is a finite tree poset.
- A model of T_{P}^{0} can be thought of as a field K with valuation rings $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$, and a $T_{P_{i}}^{0}$ structure on the i th residue field k_{i}.
- Such a structure is a model of T_{P} if $\left(K, \mathcal{O}_{1}, \ldots, \mathcal{O}_{n}\right)$ is existentially closed and each residue field is a model of $T_{P_{i}}$.

Multi-valued fields with residue structure

For $i=1, \ldots, n$ let T_{i} be a model-complete 1-sorted expansion of ACF.
Let T be the theory of $(n+1)$-sorted structures $\left(K, k_{1}, \ldots, k_{n}\right)$, with

- A field structure on K
- A residue map $K \rightarrow k_{i}$ for each i

Multi-valued fields with residue structure

For $i=1, \ldots, n$ let T_{i} be a model-complete 1-sorted expansion of ACF.
Let T be the theory of $(n+1)$-sorted structures $\left(K, k_{1}, \ldots, k_{n}\right)$, with

- A field structure on K
- A residue map $K \rightarrow k_{i}$ for each i

Lemma

A model $\left(K, k_{1}, \ldots, k_{n}\right) \models T$ is e.c. exactly when the following conditions hold:

- $K=K^{a l g}$
- Each \mathcal{O}_{i} is non-trivial and the \mathcal{O}_{i} are pairwise-independent.
- $k_{i} \models T_{i}$ for all i.

Amalgamation over algebraically closed bases

Fix a finite tree poset P.

Theorem

In the category of models of T_{P}^{0}, the amalgamation problem

$$
\begin{gathered}
K_{0} \longrightarrow K_{1} \\
\downarrow \\
K_{2}
\end{gathered}
$$

can be solved whenever $K_{0}=K_{0}^{\text {alg }}$.

Proof of amalgamation

By induction using the following:

Lemma

Let

be a diagram of fields such that $K_{0}=K_{0}^{a l g}$ and $K_{1} \otimes K_{0} K_{2}$ injects into K_{3}. Let $\mathcal{O}_{1}, \mathcal{O}_{2}$ be valuation rings on K_{1}, K_{2} having the same restriction to K_{0}. Then there is \mathcal{O}_{3} on K_{3} extending \mathcal{O}_{1} and \mathcal{O}_{2}. Moreover, \mathcal{O}_{3} can be chosen so that

$$
\operatorname{res}\left(K_{1}\right) \otimes_{\operatorname{res}\left(K_{0}\right)} \operatorname{res}\left(K_{2}\right) \hookrightarrow \operatorname{res}\left(K_{3}\right)
$$

is injective.

Corollaries of amalgamation

> Corollary
> If $K=K^{\text {alg }} \models T_{P}^{0}$, then K has the same type when embedded into any model of T_{P}.

Corollaries of amalgamation

Corollary

If $K=K^{\text {alg }} \mid=T_{P}^{0}$, then K has the same type when embedded into any model of T_{P}.

Corollary

T_{P} has elimination of quantifiers "up to algebraic covers."

Corollaries of amalgamation

Corollary

If $K=K^{\text {alg }} \models T_{P}^{0}$, then K has the same type when embedded into any model of T_{P}.

Corollary

T_{P} has elimination of quantifiers "up to algebraic covers."

Corollary

The theory T_{P} is decidable. More generally, the theory of n-multivalued algebraically closed fields is decidable.

Probable truth

Fix $K \models T_{P}^{0}$, and let $\varphi(\vec{a})$ be a T_{P}-formula with parameters $\vec{a} \in K$.

- By almost-q.e., there is a finite normal extension L / K such that, in models of T_{P} extending K, the truth of $\varphi(\vec{a})$ is determined by how the valuations are extended to L.

Probable truth

Fix $K \models T_{P}^{0}$, and let $\varphi(\vec{a})$ be a T_{P}-formula with parameters $\vec{a} \in K$.

- By almost-q.e., there is a finite normal extension L / K such that, in models of T_{P} extending K, the truth of $\varphi(\vec{a})$ is determined by how the valuations are extended to L.
- There are finitely many ways to extend the T_{P}^{0}-structure from K to L. Consider the uniform distribution on this set.

Probable truth

Fix $K \models T_{P}^{0}$, and let $\varphi(\vec{a})$ be a T_{P}-formula with parameters $\vec{a} \in K$.

- By almost-q.e., there is a finite normal extension L / K such that, in models of T_{P} extending K, the truth of $\varphi(\vec{a})$ is determined by how the valuations are extended to L.
- There are finitely many ways to extend the T_{P}^{0}-structure from K to L. Consider the uniform distribution on this set.
- Let $P(\varphi(\vec{a}) \mid K)$ denote the probability that $\varphi(\vec{a})$ holds in a model of T_{P} extending a random extension of the T_{P}^{0}-valuations to L.

Probable truth

Fix $K \models T_{P}^{0}$, and let $\varphi(\vec{a})$ be a T_{P}-formula with parameters $\vec{a} \in K$.

- By almost-q.e., there is a finite normal extension L / K such that, in models of T_{P} extending K, the truth of $\varphi(\vec{a})$ is determined by how the valuations are extended to L.
- There are finitely many ways to extend the T_{P}^{0}-structure from K to L. Consider the uniform distribution on this set.
- Let $P(\varphi(\vec{a}) \mid K)$ denote the probability that $\varphi(\vec{a})$ holds in a model of T_{P} extending a random extension of the T_{P}^{0}-valuations to L.
- This is independent of the choice of L.

Probable truth: key properties

- $P(-\mid K)$ defines a measure on the type-space of embeddings of K into models of T_{P}.

Probable truth: key properties

- $P(-\mid K)$ defines a measure on the type-space of embeddings of K into models of T_{P}.
- Probable truth is automorphism invariant.

Probable truth: key properties

- $P(-\mid K)$ defines a measure on the type-space of embeddings of K into models of T_{P}.
- Probable truth is automorphism invariant.
- Let L / K be an extension of models of T_{P}^{0}. Suppose that for every $a \in P$, the extension of residue fields with respect to \mathcal{O}_{a} is relatively algebraically closed. Then

$$
P(\varphi(\vec{b}) \mid L)=P(\varphi(\vec{b}) \mid K)
$$

for every formula φ and tuple $\vec{b} \in K$.

NTP_{2}

Fix a finite tree poset P and let N be the number of leaves in the tree.

Theorem

In the theory T_{P}, the home sort has burden at most $2 N$. In other words, there does not exist a model $M \models T_{P}$, a formula $\varphi(x ; \vec{y})$, and an array

$$
\varphi\left(x ; \vec{b}_{1,1}\right), \quad \varphi\left(x ; \vec{b}_{1,2}\right), \quad \varphi\left(x ; \vec{b}_{1,3}\right), \cdots
$$

$$
\varphi\left(x ; \vec{b}_{2 N+1,1}\right), \quad \varphi\left(x ; \vec{b}_{2 N+1,2}\right), \quad \varphi\left(x ; \vec{b}_{2 N+1,3}\right), \cdots
$$

with $2 N+1$ rows and ω columns such that every row is k-inconsistent and every path $\eta:[2 N+1] \rightarrow \omega$ through the rows is consistent.

NTP_{2}

Fix a finite tree poset P and let N be the number of leaves in the tree.

Theorem

In the theory T_{P}, the home sort has burden at most $2 N$. In other words, there does not exist a model $M \models T_{P}$, a formula $\varphi(x ; \vec{y})$, and an array

$$
\varphi\left(x ; \vec{b}_{1,1}\right), \quad \varphi\left(x ; \vec{b}_{1,2}\right), \quad \varphi\left(x ; \vec{b}_{1,3}\right), \cdots
$$

$$
\varphi\left(x ; \vec{b}_{2 N+1,1}\right), \quad \varphi\left(x ; \vec{b}_{2 N+1,2}\right), \quad \varphi\left(x ; \vec{b}_{2 N+1,3}\right), \cdots
$$

with $2 N+1$ rows and ω columns such that every row is k-inconsistent and every path $\eta:[2 N+1] \rightarrow \omega$ through the rows is consistent.

By a result of Chernikov, it follows that T_{P} is strong (hence NTP ${ }_{2}$).

Proof sketch

Part 1: find a locally indiscernible row.

Proof sketch

Part 1: find a locally indiscernible row.

- Extract a mutually indiscernible inp pattern.

Proof sketch

Part 1: find a locally indiscernible row.

- Extract a mutually indiscernible inp pattern.
- Choose an element a satisfying the 0th column.

Proof sketch

Part 1: find a locally indiscernible row.

- Extract a mutually indiscernible inp pattern.
- Choose an element a satisfying the Oth column.
- Consider each reduct $\left(M, \mathcal{O}_{p}\right)$ for $p \in P$. As this reduct is dp-minimal, we can delete a row while making the remaining rows be mutually a-indiscernible in the reduct.
- (See the proof that dp-rank is additive TODO)

Proof sketch

Part 1: find a locally indiscernible row.

- Extract a mutually indiscernible inp pattern.
- Choose an element a satisfying the 0th column.
- Consider each reduct $\left(M, \mathcal{O}_{p}\right)$ for $p \in P$. As this reduct is dp-minimal, we can delete a row while making the remaining rows be mutually a-indiscernible in the reduct.
- (See the proof that dp-rank is additive TODO)
- After running through all $p \in P$, at least one row

$$
\varphi\left(x ; b_{0}\right), \varphi\left(x ; b_{1}\right), \ldots
$$

remains. This row is a-indiscernible in every reduct $\left(M, \mathcal{O}_{p}\right)$.

Proof sketch

- So far: a k-inconsistent sequence of formulas

$$
\varphi\left(x ; b_{0}\right), \varphi\left(x ; b_{1}\right), \ldots
$$

such that \vec{b} is a-indiscernible in every $\left(M, \mathcal{O}_{p}\right)$. Also, $M \models \varphi\left(a ; b_{0}\right)$.

Proof sketch

- So far: a k-inconsistent sequence of formulas

$$
\varphi\left(x ; b_{0}\right), \varphi\left(x ; b_{1}\right), \ldots
$$

such that \vec{b} is a-indiscernible in every $\left(M, \mathcal{O}_{p}\right)$. Also, $M \models \varphi\left(a ; b_{0}\right)$.

- Find an algebraically closed base field B containing \vec{b} such that

$$
P\left(\varphi\left(a ; b_{i}\right) \mid a B\right)=\mu \text { not dependent on } i
$$

Proof sketch

- So far: a k-inconsistent sequence of formulas

$$
\varphi\left(x ; b_{0}\right), \varphi\left(x ; b_{1}\right), \ldots
$$

such that \vec{b} is a-indiscernible in every $\left(M, \mathcal{O}_{p}\right)$. Also, $M \models \varphi\left(a ; b_{0}\right)$.

- Find an algebraically closed base field B containing \vec{b} such that

$$
P\left(\varphi\left(a ; b_{i}\right) \mid a B\right)=\mu \text { not dependent on } i
$$

- $\mu>0$ because $\varphi\left(a ; b_{0}\right)$ is already true.

Proof sketch

- So far: a k-inconsistent sequence of formulas

$$
\varphi\left(x ; b_{0}\right), \varphi\left(x ; b_{1}\right), \ldots
$$

such that \vec{b} is a-indiscernible in every $\left(M, \mathcal{O}_{p}\right)$. Also, $M \models \varphi\left(a ; b_{0}\right)$.

- Find an algebraically closed base field B containing \vec{b} such that

$$
P\left(\varphi\left(a ; b_{i}\right) \mid a B\right)=\mu \text { not dependent on } i
$$

- $\mu>0$ because $\varphi\left(a ; b_{0}\right)$ is already true.
- In a random extension of $a B, \sim k$ of the following formulas hold

$$
\varphi\left(a ; b_{0}\right), \varphi\left(a ; b_{1}\right), \ldots, \varphi\left(a ; b_{\lceil k / \mu\rceil}\right)
$$

Proof sketch

- So far: a k-inconsistent sequence of formulas

$$
\varphi\left(x ; b_{0}\right), \varphi\left(x ; b_{1}\right), \ldots
$$

such that \vec{b} is a-indiscernible in every $\left(M, \mathcal{O}_{p}\right)$. Also, $M \models \varphi\left(a ; b_{0}\right)$.

- Find an algebraically closed base field B containing \vec{b} such that

$$
P\left(\varphi\left(a ; b_{i}\right) \mid a B\right)=\mu \text { not dependent on } i
$$

- $\mu>0$ because $\varphi\left(a ; b_{0}\right)$ is already true.
- In a random extension of $a B, \sim k$ of the following formulas hold

$$
\varphi\left(a ; b_{0}\right), \varphi\left(a ; b_{1}\right), \ldots, \varphi\left(a ; b_{\lceil k / \mu\rceil}\right)
$$

- By existential closure of M, and amalgamation over B, we can pull the situation back into M, contradicting k-inconsistency.

Open questions

- If K is an algebraically closed field with n independent valuations, and if we add an NTP_{2} structure onto each residue field, is the resulting structure NTP $_{2}$ as a whole?

Open questions

- If K is an algebraically closed field with n independent valuations, and if we add an NTP_{2} structure onto each residue field, is the resulting structure NTP_{2} as a whole?
- If K is a dp-minimal field and $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$ are arbitrary valuations on K, is $\left(K, \mathcal{O}_{1}, \ldots, \mathcal{O}_{n}\right)$ strong?

Open questions

- If K is an algebraically closed field with n independent valuations, and if we add an NTP ${ }_{2}$ structure onto each residue field, is the resulting structure NTP_{2} as a whole?
- If K is a dp-minimal field and $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$ are arbitrary valuations on K, is $\left(K, \mathcal{O}_{1}, \ldots, \mathcal{O}_{n}\right)$ strong?
- If (K, \ldots) is strong and \mathcal{O} is arbitrary, must (K, \ldots, \mathcal{O}) be strong?

References

- Model theory of fields with multiple valuations:
- Lou van den Dries. "Model theory of Fields: Decidability and Bounds for Polynomial Ideals" 1978. Dissertation
- Yuri L. Ershov. Multi-valued Fields. Springer, 2001.
- Will Johnson. "Fun with fields" Chapter 11. 2016. Dissertation.
- Background on dp-rank and burden
- Artem Chernikov. "Theories without the Tree Property of the Second Kind." Annals of pure and applied logic. Feb 2014.
- Itay Kaplan, Alf Onshuus, and Alexander Usvyatsov. "Additivity of the dp-rank." Trans. Amer. Math. Soc. Nov 2013.

