Boundedness and absoluteness of some dynamical invariants

Krzysztof Krupiński (joint work with Ludomir Newelski and Pierre Simon)

Instytut Matematyczny Uniwersytet Wrocławski

Paris March 26, 2018

Krzysztof Krupiński Boundedness and absoluteness of some dynamical invariants

G-flows

Definition

A *G*-flow is a pair (G, X), where *G* is a (discrete) group acting by homeomorphisms on a compact Hausdorff space *X*.

Definition

The *Ellis semigroup* of a *G*-flow (G, X), denoted by EL(X), is the closure in X^X of the set of all functions π_g , $g \in G$, defined by $\pi_g(x) = gx$, with composition as semigroup operation.

Fact (Ellis)

Let (G, X) be a *G*-flow and EL(X) its Ellis semigroup. Then the semigroup operation on EL(X) is continuous on the left. Thus, every minimal left ideal $\mathcal{M} \triangleleft EL(X)$ is the disjoint union of sets $u\mathcal{M}$ with *u* ranging over $J(\mathcal{M}) := \{u \in \mathcal{M} : u^2 = u\}$. Each $u\mathcal{M}$ is a group whose isomorphism type does not depend on the choice of \mathcal{M} and $u \in J(\mathcal{M})$. The isomorphism class of these groups is called the *Ellis group* of the flow (G, X).

Boundedness and absoluteness of some dynamical invariants

Definition

A *G*-flow is a pair (G, X), where *G* is a (discrete) group acting by homeomorphisms on a compact Hausdorff space *X*.

Definition

The *Ellis semigroup* of a *G*-flow (G, X), denoted by EL(X), is the closure in X^X of the set of all functions π_g , $g \in G$, defined by $\pi_g(x) = gx$, with composition as semigroup operation.

Fact (Ellis)

Let (G, X) be a *G*-flow and EL(X) its Ellis semigroup. Then the semigroup operation on EL(X) is continuous on the left. Thus, every minimal left ideal $\mathcal{M} \triangleleft EL(X)$ is the disjoint union of sets $u\mathcal{M}$ with *u* ranging over $J(\mathcal{M}) := \{u \in \mathcal{M} : u^2 = u\}$. Each $u\mathcal{M}$ is a group whose isomorphism type does not depend on the choice of \mathcal{M} and $u \in J(\mathcal{M})$. The isomorphism class of these groups is called the *Ellis group* of the flow (G, X).

Definition

A *G*-flow is a pair (G, X), where *G* is a (discrete) group acting by homeomorphisms on a compact Hausdorff space *X*.

Definition

The *Ellis semigroup* of a *G*-flow (G, X), denoted by EL(X), is the closure in X^X of the set of all functions π_g , $g \in G$, defined by $\pi_g(x) = gx$, with composition as semigroup operation.

Fact (Ellis)

Let (G, X) be a G-flow and EL(X) its Ellis semigroup. Then the semigroup operation on EL(X) is continuous on the left. Thus, every minimal left ideal $\mathcal{M} \triangleleft EL(X)$ is the disjoint union of sets $u\mathcal{M}$ with u ranging over $J(\mathcal{M}) := \{u \in \mathcal{M} : u^2 = u\}$. Each $u\mathcal{M}$ is a group whose isomorphism type does not depend on the choice of \mathcal{M} and $u \in J(\mathcal{M})$. The isomorphism class of these groups is called the *Ellis group* of the flow (G, X).

Boundedness and absoluteness of some dynamical invariants

$Aut(\mathfrak{C})$ -flows

 $\mathfrak{C} \models \mathcal{T} - a \text{ monster model}; \ \mathfrak{C}' \succ \mathfrak{C} - a \text{ bigger monster model} \\ S = \prod_{i \in S_i} - a \text{ product of (possibly unboundedly many) sorts} \\ X - a \emptyset \text{-type-definable subset of } S \\ S_X(\mathfrak{C}) - \text{the space of all global types concentrated on } X$

Remark

 $(\operatorname{Aut}(\mathfrak{C}), S_X(\mathfrak{C}))$ is an $\operatorname{Aut}(\mathfrak{C})$ -flow.

- \bar{a} a short tuple of elements of \mathfrak{C}
- \bar{c} an enumeration of \mathfrak{C}

Notation

$$\begin{split} S_{\bar{a}}(\mathfrak{C}) &:= \{ \operatorname{tp}(\bar{a}'/\mathfrak{C}) : \bar{a}' \subseteq \mathfrak{C}' \text{ and } \bar{a}' \models \operatorname{tp}(\bar{a}/\emptyset) \} = S_X(\mathfrak{C}) \text{ for } \\ X &:= \operatorname{tp}(\bar{a}/\emptyset). \\ S_{\bar{c}}(\mathfrak{C}) &:= \{ \operatorname{tp}(\bar{c}'/\mathfrak{C}) : \bar{c} \subseteq \mathfrak{C}' \text{ and } \bar{c}' \models \operatorname{tp}(\bar{c}/\emptyset) \} = S_X(\mathfrak{C}) \text{ for } \\ X &:= \operatorname{tp}(\bar{c}/\emptyset). \end{split}$$

3

$Aut(\mathfrak{C})$ -flows

 $\mathfrak{C} \models \mathcal{T} - a \text{ monster model}; \ \mathfrak{C}' \succ \mathfrak{C} - a \text{ bigger monster model} \\ S = \prod_{i \in S_i} - a \text{ product of (possibly unboundedly many) sorts} \\ X - a \emptyset \text{-type-definable subset of } S \\ S_X(\mathfrak{C}) - \text{the space of all global types concentrated on } X$

Remark

 $(\operatorname{Aut}(\mathfrak{C}), S_X(\mathfrak{C}))$ is an $\operatorname{Aut}(\mathfrak{C})$ -flow.

- \bar{a} a short tuple of elements of \mathfrak{C}
- \bar{c} an enumeration of \mathfrak{C}

Notation

$$\begin{split} S_{\bar{a}}(\mathfrak{C}) &:= \{ \operatorname{tp}(\bar{a}'/\mathfrak{C}) : \bar{a}' \subseteq \mathfrak{C}' \text{ and } \bar{a}' \models \operatorname{tp}(\bar{a}/\emptyset) \} = S_X(\mathfrak{C}) \text{ for } \\ X &:= \operatorname{tp}(\bar{a}/\emptyset). \\ S_{\bar{c}}(\mathfrak{C}) &:= \{ \operatorname{tp}(\bar{c}'/\mathfrak{C}) : \bar{c} \subseteq \mathfrak{C}' \text{ and } \bar{c}' \models \operatorname{tp}(\bar{c}/\emptyset) \} = S_X(\mathfrak{C}) \text{ for } \\ X &:= \operatorname{tp}(\bar{c}/\emptyset). \end{split}$$

- 4 目 ト 4 日 ト

$Aut(\mathfrak{C})$ -flows

 $\mathfrak{C} \models T$ – a monster model; $\mathfrak{C}' \succ \mathfrak{C}$ – a bigger monster model $S = \prod_{i \in S_i}$ – a product of (possibly unboundedly many) sorts X – a \emptyset -type-definable subset of S $S_X(\mathfrak{C})$ – the space of all global types concentrated on X

Remark

 $(\operatorname{Aut}(\mathfrak{C}), S_X(\mathfrak{C}))$ is an $\operatorname{Aut}(\mathfrak{C})$ -flow.

- \bar{a} a short tuple of elements of $\mathfrak C$
- $ar{c}$ an enumeration of $\mathfrak C$

Notation

$$\begin{split} S_{\bar{a}}(\mathfrak{C}) &:= \{ \operatorname{tp}(\bar{a}'/\mathfrak{C}) : \bar{a}' \subseteq \mathfrak{C}' \text{ and } \bar{a}' \models \operatorname{tp}(\bar{a}/\emptyset) \} = S_X(\mathfrak{C}) \text{ for } \\ X &:= \operatorname{tp}(\bar{a}/\emptyset). \\ S_{\bar{c}}(\mathfrak{C}) &:= \{ \operatorname{tp}(\bar{c}'/\mathfrak{C}) : \bar{c} \subseteq \mathfrak{C}' \text{ and } \bar{c}' \models \operatorname{tp}(\bar{c}/\emptyset) \} = S_X(\mathfrak{C}) \text{ for } \\ X &:= \operatorname{tp}(\bar{c}/\emptyset). \end{split}$$

< ロ > < 同 > < 回 > < 回 >

 $EL := EL(S_{\bar{c}}(\mathfrak{C}))$ – the Ellis semigroup of the flow $(\operatorname{Aut}(\mathfrak{C}), S_{\bar{c}}(\mathfrak{C}))$ $\mathcal{M} \triangleleft EL$ – a minimal left ideal; $u \in \mathcal{M}$ – an idempotent

Fact

There is a compact, T_1 topology on $u\mathcal{M}$ making the group operation separately continuous. The quotient $u\mathcal{M}/H(u\mathcal{M})$ is a compact Hausdorff group, where $H(u\mathcal{M})$ is the intersection of the closures of the neighborhoods of 1.

Theorem (K., Pillay, Rzepecki)

$$u\mathcal{M} \twoheadrightarrow u\mathcal{M}/H(u\mathcal{M}) \twoheadrightarrow \operatorname{Gal}_{L}(T) \twoheadrightarrow \operatorname{Gal}_{KP}(T)$$

Theorem (K., Pillay, Rzepecki)

 $EL := EL(S_{\bar{c}}(\mathfrak{C}))$ – the Ellis semigroup of the flow $(\operatorname{Aut}(\mathfrak{C}), S_{\bar{c}}(\mathfrak{C}))$ $\mathcal{M} \triangleleft EL$ – a minimal left ideal; $u \in \mathcal{M}$ – an idempotent

Fact

There is a compact, T_1 topology on $u\mathcal{M}$ making the group operation separately continuous. The quotient $u\mathcal{M}/H(u\mathcal{M})$ is a compact Hausdorff group, where $H(u\mathcal{M})$ is the intersection of the closures of the neighborhoods of 1.

Theorem (K., Pillay, Rzepecki)

 $u\mathcal{M} \twoheadrightarrow u\mathcal{M}/H(u\mathcal{M}) \twoheadrightarrow \operatorname{Gal}_{L}(T) \twoheadrightarrow \operatorname{Gal}_{KP}(T)$

Theorem (K., Pillay, Rzepecki)

 $EL := EL(S_{\bar{c}}(\mathfrak{C}))$ – the Ellis semigroup of the flow $(\operatorname{Aut}(\mathfrak{C}), S_{\bar{c}}(\mathfrak{C}))$ $\mathcal{M} \triangleleft EL$ – a minimal left ideal; $u \in \mathcal{M}$ – an idempotent

Fact

There is a compact, T_1 topology on $u\mathcal{M}$ making the group operation separately continuous. The quotient $u\mathcal{M}/H(u\mathcal{M})$ is a compact Hausdorff group, where $H(u\mathcal{M})$ is the intersection of the closures of the neighborhoods of 1.

Theorem (K., Pillay, Rzepecki)

$$u\mathcal{M} \twoheadrightarrow u\mathcal{M}/H(u\mathcal{M}) \twoheadrightarrow \operatorname{Gal}_{L}(T) \twoheadrightarrow \operatorname{Gal}_{KP}(T)$$

Theorem (K., Pillay, Rzepecki)

 $EL := EL(S_{\bar{c}}(\mathfrak{C}))$ – the Ellis semigroup of the flow $(\operatorname{Aut}(\mathfrak{C}), S_{\bar{c}}(\mathfrak{C}))$ $\mathcal{M} \triangleleft EL$ – a minimal left ideal; $u \in \mathcal{M}$ – an idempotent

Fact

There is a compact, T_1 topology on $u\mathcal{M}$ making the group operation separately continuous. The quotient $u\mathcal{M}/H(u\mathcal{M})$ is a compact Hausdorff group, where $H(u\mathcal{M})$ is the intersection of the closures of the neighborhoods of 1.

Theorem (K., Pillay, Rzepecki)

$$u\mathcal{M} \twoheadrightarrow u\mathcal{M}/H(u\mathcal{M}) \twoheadrightarrow \operatorname{Gal}_L(T) \twoheadrightarrow \operatorname{Gal}_{KP}(T)$$

Theorem (K., Pillay, Rzepecki)

Question

Are \mathcal{M} , $u\mathcal{M}$, or $u\mathcal{M}/H(u\mathcal{M})$ model theoretic objects, i.e. are they independent of the choice of \mathfrak{C} ?

Definition

If they are, we say that they are *absolute*.

A related question is

Question

Are these objects of bounded size with respect to \mathfrak{C} ? Is there an absolute bound on their size when \mathfrak{C} varies?

And this is what this talk is about.

Question

Are \mathcal{M} , $u\mathcal{M}$, or $u\mathcal{M}/H(u\mathcal{M})$ model theoretic objects, i.e. are they independent of the choice of \mathfrak{C} ?

Definition

If they are, we say that they are *absolute*.

A related question is

Question

Are these objects of bounded size with respect to \mathfrak{C} ? Is there an absolute bound on their size when \mathfrak{C} varies?

And this is what this talk is about.

Question

Are \mathcal{M} , $u\mathcal{M}$, or $u\mathcal{M}/H(u\mathcal{M})$ model theoretic objects, i.e. are they independent of the choice of \mathfrak{C} ?

Definition

If they are, we say that they are *absolute*.

A related question is

Question

Are these objects of bounded size with respect to \mathfrak{C} ? Is there an absolute bound on their size when \mathfrak{C} varies?

And this is what this talk is about.

Proposition

Let S be the product of all the sorts of the language such that each sort is repeated \aleph_0 times. Then $EL(S_{\bar{c}}(\mathfrak{C})) \cong EL(S_S(\mathfrak{C}))$. In particular, the corresponding minimal left ideals of these Ellis semigroups are isomorphic, and the Ellis groups of the flows $S_{\bar{c}}(\mathfrak{C})$ and $S_S(\mathfrak{C})$ are isomorphic.

Proposition

Let S be a product of some sorts of the language with repetitions allowed so that the number of factors may be unbounded, and let X be a \emptyset -type-definable subset of S. Then there exists a product S' of at most $2^{|T|}$ sorts and a \emptyset -type-definable subset Y of S' such that $EL(S_X(\mathfrak{C})) \cong EL(S_Y(\mathfrak{C}))$.

| 4 同 ト 4 ヨ ト 4 ヨ ト

Proposition

Let S be the product of all the sorts of the language such that each sort is repeated \aleph_0 times. Then $EL(S_{\bar{c}}(\mathfrak{C})) \cong EL(S_S(\mathfrak{C}))$. In particular, the corresponding minimal left ideals of these Ellis semigroups are isomorphic, and the Ellis groups of the flows $S_{\bar{c}}(\mathfrak{C})$ and $S_S(\mathfrak{C})$ are isomorphic.

Proposition

Let S be a product of some sorts of the language with repetitions allowed so that the number of factors may be unbounded, and let X be a \emptyset -type-definable subset of S. Then there exists a product S' of at most $2^{|T|}$ sorts and a \emptyset -type-definable subset Y of S' such that $EL(S_X(\mathfrak{C})) \cong EL(S_Y(\mathfrak{C}))$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

$M := (S^1, R(x, y, z)); \mathfrak{C} \succ M$ R(x, y, z) defines the circular order on S^1

Fact

Th(M) has q.e. and NIP.

NA – all non-algebraic types (cuts) in $S_1(\mathfrak{C})$ \mathcal{C} – all constant functions $S_1(\mathfrak{C}) \rightarrow S_1(\mathfrak{C})$ with values in NA

Observations

- (2) For any $\eta \in C$, $EL(S_1(\mathfrak{C}))\eta = C$.
- O is the unique minimal left ideal of *EL*(S₁(C)), and it is unbounded!
- The Ellis group of $S_1(\mathfrak{C})$ is trivial (so bounded).

< ロ > < 同 > < 三 > < 三

Example

 $M := (S^1, R(x, y, z)); \mathfrak{C} \succ M$ R(x, y, z) defines the circular order on S^1

Fact

Th(M) has q.e. and NIP.

NA – all non-algebraic types (cuts) in $S_1(\mathfrak{C})$ \mathcal{C} – all constant functions $S_1(\mathfrak{C}) \rightarrow S_1(\mathfrak{C})$ with values in NA

Observations

- $\mathcal{C} \subseteq EL(S_1(\mathfrak{C})).$
- ② For any $\eta \in C$, $EL(S_1(\mathfrak{C}))\eta = C$.
- 3 C is the unique minimal left ideal of EL(S₁(C)), and it is unbounded!
- The Ellis group of $S_1(\mathfrak{C})$ is trivial (so bounded).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ

Example

 $M := (S^1, R(x, y, z)); \mathfrak{C} \succ M$ R(x, y, z) defines the circular order on S^1

Fact

Th(M) has q.e. and NIP.

NA – all non-algebraic types (cuts) in $S_1(\mathfrak{C})$ C – all constant functions $S_1(\mathfrak{C}) \rightarrow S_1(\mathfrak{C})$ with values in NA

Observations

- **2** For any $\eta \in C$, $EL(S_1(\mathfrak{C}))\eta = C$.
- Solution C is the unique minimal left ideal of EL(S₁(C)), and it is unbounded!
- The Ellis group of $S_1(\mathfrak{C})$ is trivial (so bounded).

イロト イポト イラト イラト

Main results

S – a product of sorts; $X - \emptyset$ -type-definable subset of S

Theorem 1

The Ellis group of the flow $S_X(\mathfrak{C})$ is absolute and bounded by $\beth_5(|\mathcal{T}|)$. Under NIP, we get $\beth_3(|\mathcal{T}|)$ as a bound.

Theorem 2

- The property that some [equiv. every] minimal left ideal of *EL*(*S_X*(𝔅)) is bounded is absolute.
- If minimal left ideals of *EL*(*S_X*(𝔅)) are bounded, then they are bounded by ⊐₃(|*T*|).
- If minimal left ideals of *EL*(*S_X*(𝔅)) are bounded, and 𝔅₁ and 𝔅₂ are two monster models, then every minimal left ideal of *EL*(*S_X*(𝔅₁)) is isomorphic to some minimal left ideal of *EL*(*S_X*(𝔅₂)).

< ロ > < 同 > < 三 > < 三 >

-

Main results

S – a product of sorts; $X - \emptyset$ -type-definable subset of S

Theorem 1

The Ellis group of the flow $S_X(\mathfrak{C})$ is absolute and bounded by $\beth_5(|\mathcal{T}|)$. Under NIP, we get $\beth_3(|\mathcal{T}|)$ as a bound.

Theorem 2

- The property that some [equiv. every] minimal left ideal of *EL*(S_X(C)) is bounded is absolute.
- If minimal left ideals of *EL*(*S_X*(𝔅)) are bounded, then they are bounded by ⊐₃(|*T*|).
- If minimal left ideals of *EL*(*S_X*(𝔅)) are bounded, and 𝔅₁ and 𝔅₂ are two monster models, then every minimal left ideal of *EL*(*S_X*(𝔅₁)) is isomorphic to some minimal left ideal of *EL*(*S_X*(𝔅₂)).

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

3

 \mathcal{M} – a minimal left ideal of $EL(S_X(\mathfrak{C}))$ I_L – the Lascar invariant types in $S_X(\mathfrak{C})$

Proposition 3

TFAE

- \mathcal{M} is bounded.
- **2** For every $\eta \in \mathcal{M}$, $\operatorname{Im}(\eta) \subseteq I_L$.
- For some $\eta \in EL(S_X(\mathfrak{C}))$, $Im(\eta) \subseteq I_L$.

→ < ∃ →</p>

Main results cont. - the NIP case

```
ar{c} – an enumeration of {\mathfrak C}
```

 \mathcal{M} – a minimal left ideal in $EL(S_{\bar{c}}(\mathfrak{C}))$,

 $u \in \mathcal{M}$ – an idempotent

Theorem 4

Assume NIP. Then TFAE.

- 1) \mathcal{M} is bounded.
- ② Ø is an extension base.
- The underlying theory is amenable.
- Several more conditions...

Theorem 5

Assume NIP. If \mathcal{M} is bounded, then the aforementioned epimorphism $u\mathcal{M} \to \operatorname{Gal}_{KP}(\mathcal{T})$ is an isomorphism. So $|u\mathcal{M}| \leq 2^{|\mathcal{T}|}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Main results cont. - the NIP case

```
\bar{c} - an enumeration of \mathfrak{C}
\mathcal{M} - a minimal left ideal in EL(S_{\bar{c}}(\mathfrak{C})),
u \in \mathcal{M} - an idempotent
```

Theorem 4

Assume NIP. Then TFAE.

- $\ \, {\cal M} \ \, {\rm is \ \, bounded}.$
- **2** \emptyset is an extension base.
- The underlying theory is *amenable*.
- Several more conditions...

Theorem 5

Assume NIP. If \mathcal{M} is bounded, then the aforementioned epimorphism $u\mathcal{M} \to \operatorname{Gal}_{KP}(\mathcal{T})$ is an isomorphism. So $|u\mathcal{M}| \leq 2^{|\mathcal{T}|}$.

• • = • • = •

Main results cont. - the NIP case

```
\bar{c} - an enumeration of \mathfrak{C}
\mathcal{M} - a minimal left ideal in EL(S_{\bar{c}}(\mathfrak{C})),
u \in \mathcal{M} - an idempotent
```

Theorem 4

Assume NIP. Then TFAE.

- $\ \, {\cal M} \ \, {\rm is \ \, bounded}.$
- **2** \emptyset is an extension base.
- The underlying theory is *amenable*.
- Several more conditions...

Theorem 5

Assume NIP. If \mathcal{M} is bounded, then the aforementioned epimorphism $u\mathcal{M} \to \text{Gal}_{KP}(T)$ is an isomorphism. So $|u\mathcal{M}| \leq 2^{|T|}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Content of a sequence of types

 $p_1(\bar{x}),\ldots,p_n(\bar{x})\in S_S(A)$

Definition – the *content* of (p_1, \ldots, p_n)

 $c(p_1, \ldots, p_n)$ is the set of all tuples $(\varphi_1(\bar{x}, \bar{y}), \ldots, \varphi_n(\bar{x}, \bar{y}), q(\bar{y}))$, where:

• the $\varphi_i(ar{x},ar{y})$'s are formulas without parameters,

•
$$q(ar{y})\in S_{ar{y}}(\emptyset)$$
,

• there is
$$ar{b}\models q$$
 such that $arphi_1(ar{x},ar{b})\in p_1,\ldots,arphi_n(ar{x},ar{b})\in p_n$

Comment

The notion of content of a single type leads to a "coarsening" of the notion of fundamental order, and allows us to define a notion of free extension of a type which satisfies existence and coincides with non-forking in stable theories.

周 ト イ ヨ ト イ ヨ

Content of a sequence of types

 $p_1(\bar{x}),\ldots,p_n(\bar{x})\in S_S(A)$

Definition – the *content* of (p_1, \ldots, p_n)

 $c(p_1, \ldots, p_n)$ is the set of all tuples $(\varphi_1(\bar{x}, \bar{y}), \ldots, \varphi_n(\bar{x}, \bar{y}), q(\bar{y}))$, where:

• the $\varphi_i(ar{x},ar{y})$'s are formulas without parameters,

•
$$q(ar{y})\in S_{ar{y}}(\emptyset)$$
,

• there is
$$ar{b}\models q$$
 such that $arphi_1(ar{x},ar{b})\in p_1,\ldots,arphi_n(ar{x},ar{b})\in p_n$

Comment

The notion of content of a single type leads to a "coarsening" of the notion of fundamental order, and allows us to define a notion of free extension of a type which satisfies existence and coincides with non-forking in stable theories.

Description of orbits of $EL(S_X(\mathfrak{C}))$

 $X - a \emptyset$ -type-definable subset of S $\bar{p} = (p_1, \dots, p_n), \ \bar{q} = (q_1, \dots, q_n)$ – sequences of types in $S_X(\mathfrak{C})$ $EL := EL(S_X(\mathfrak{C}))$

General Lemma

 $c(\bar{q}) \subseteq c(\bar{p})$ iff there is $\eta \in EL$ such that $\eta(\bar{p}) = \bar{q}$.

Proof.

 $(\rightarrow) \text{ Consider any } \varphi_1(\bar{x}, \bar{b}) \in q_1, \dots, \varphi_n(\bar{x}, \bar{b}) \in q_n. \text{ By} \\ \text{assumption, there is a tuple } \bar{b}' \equiv_{\emptyset} \bar{b} \text{ such that } \varphi_i(\bar{x}, \bar{b}') \in p_i \text{ for all } \\ i = 1, \dots, n. \text{ Take } \sigma_{\varphi_1(\bar{x}, \bar{b}), \dots, \varphi_n(\bar{x}, \bar{b})} \in \text{Aut}(\mathfrak{C}) \text{ mapping } \bar{b}' \text{ to } \bar{b}. \\ \text{Choose a subnet } (\sigma_j) \text{ of the net } (\sigma_{\varphi_1(\bar{x}, \bar{b}), \dots, \varphi_n(\bar{x}, \bar{b})}) \text{ which} \\ \text{converges to some } \eta \in EL. \text{ Then } \eta(p_i) = q_i \text{ for all } i. \\ \end{tabular}$

- 4 同 ト 4 ヨ ト 4 ヨ ト

 $X - a \emptyset$ -type-definable subset of S $\bar{p} = (p_1, \dots, p_n), \ \bar{q} = (q_1, \dots, q_n) - \text{sequences of types in } S_X(\mathfrak{C})$ $EL := EL(S_X(\mathfrak{C}))$

General Lemma

 $c(\bar{q}) \subseteq c(\bar{p})$ iff there is $\eta \in EL$ such that $\eta(\bar{p}) = \bar{q}$.

Proof.

 $\begin{array}{l} (\rightarrow) \text{ Consider any } \varphi_1(\bar{x},\bar{b}) \in q_1,\ldots,\varphi_n(\bar{x},\bar{b}) \in q_n. \text{ By} \\ \text{assumption, there is a tuple } \bar{b}' \equiv_{\emptyset} \bar{b} \text{ such that } \varphi_i(\bar{x},\bar{b}') \in p_i \text{ for all } \\ i=1,\ldots,n. \text{ Take } \sigma_{\varphi_1(\bar{x},\bar{b}),\ldots,\varphi_n(\bar{x},\bar{b})} \in \text{Aut}(\mathfrak{C}) \text{ mapping } \bar{b}' \text{ to } \bar{b}. \\ \text{Choose a subnet } (\sigma_j) \text{ of the net } (\sigma_{\varphi_1(\bar{x},\bar{b}),\ldots,\varphi_n(\bar{x},\bar{b})}) \text{ which} \\ \text{converges to some } \eta \in EL. \text{ Then } \eta(p_i) = q_i \text{ for all } i. \end{array}$

< 同 > < 三 > < 三 > -

Proof.

(\leftarrow) Consider any $(\varphi_1(\bar{x}, \bar{y}), \ldots, \varphi_n(\bar{x}, \bar{y}), q(\bar{y})) \in c(\bar{q})$. Then there is $\bar{b} \in q(\mathfrak{C})$ such that $\varphi_i(\bar{x}, \bar{b}) \in q_i$ for all $i = 1, \ldots, n$. By the fact that η is approximated by automorphisms of \mathfrak{C} , we get $\sigma \in \operatorname{Aut}(\mathfrak{C})$ such that $\varphi_i(\bar{x}, \bar{b}) \in \sigma(p_i)$, and so $\varphi_i(\bar{x}, \sigma^{-1}(\bar{b})) \in p_i$, holds for all $i = 1, \ldots, n$. Hence $(\varphi_1(\bar{x}, \bar{y}), \ldots, \varphi_n(\bar{x}, \bar{y}), q(\bar{y})) \in c(\bar{p})$.

 I_S – the number of factors in S

Remark

The number of contents of all possible finite tuples of types from $S_{\mathcal{S}}(\mathfrak{C})$ is bounded by $2^{\max(I_{\mathcal{S}}, 2^{|\mathcal{T}|})}$.

So, let $P \subseteq \bigcup_{n \in \omega} S_X(\mathfrak{C})^n$ be of cardinality at most $2^{\max(l_S, 2^{|T|})}$ and such that

$${c(\bar{p}): \bar{p} \in P} = {c(\bar{p}): \bar{p} \in \bigcup_{n \in \omega} S_X(\mathfrak{C})^n}.$$

 $P_{\text{proj}} := \{ p \in S_X(\mathfrak{C}) : (\exists (p_1, \ldots, p_n) \in P)(\exists i) (p = p_i) \}.$

 $R := \operatorname{cl}(P_{\operatorname{proj}}) \subseteq S_X(\mathfrak{C}).$

Then $|R| \leq \beth_3(\max(I_S, 2^{|T|})).$

 I_S – the number of factors in S

Remark

The number of contents of all possible finite tuples of types from $S_S(\mathfrak{C})$ is bounded by $2^{\max(I_S, 2^{|\mathcal{T}|})}$.

So, let $P \subseteq \bigcup_{n \in \omega} S_X(\mathfrak{C})^n$ be of cardinality at most $2^{\max(I_S, 2^{|\mathcal{T}|})}$ and such that

$$\{c(\bar{p}): \bar{p} \in P\} = \{c(\bar{p}): \bar{p} \in \bigcup_{n \in \omega} S_X(\mathfrak{C})^n\}.$$

 $P_{\text{proj}} := \{ p \in S_X(\mathfrak{C}) : (\exists (p_1, \ldots, p_n) \in P) (\exists i) (p = p_i) \}.$

$$R:=\mathsf{cl}(P_{\mathrm{proj}})\subseteq S_X(\mathfrak{C}).$$

Then $|R| \leq \beth_3(\max(I_S, 2^{|T|})).$

 I_S – the number of factors in S

Remark

The number of contents of all possible finite tuples of types from $S_S(\mathfrak{C})$ is bounded by $2^{\max(I_S, 2^{|\mathcal{T}|})}$.

So, let $P \subseteq \bigcup_{n \in \omega} S_X(\mathfrak{C})^n$ be of cardinality at most $2^{\max(I_S, 2^{|T|})}$ and such that

$$\{c(\bar{p}): \bar{p} \in P\} = \{c(\bar{p}): \bar{p} \in \bigcup_{n \in \omega} S_X(\mathfrak{C})^n\}.$$

 $P_{\text{proj}} := \{ p \in S_X(\mathfrak{C}) : (\exists (p_1, \ldots, p_n) \in P) (\exists i) (p = p_i) \}.$

$$R:=\mathsf{cl}(P_{\mathrm{proj}})\subseteq S_X(\mathfrak{C}).$$

Then $|R| \leq \beth_3(\max(I_S, 2^{|T|})).$

 I_S – the number of factors in S

Remark

The number of contents of all possible finite tuples of types from $S_S(\mathfrak{C})$ is bounded by $2^{\max(I_S, 2^{|\mathcal{T}|})}$.

So, let $P \subseteq \bigcup_{n \in \omega} S_X(\mathfrak{C})^n$ be of cardinality at most $2^{\max(I_S, 2^{|\mathcal{T}|})}$ and such that

$$\{c(\bar{p}): \bar{p} \in P\} = \{c(\bar{p}): \bar{p} \in \bigcup_{n \in \omega} S_X(\mathfrak{C})^n\}.$$

 $P_{\text{proj}} := \{ p \in S_X(\mathfrak{C}) : (\exists (p_1, \ldots, p_n) \in P) (\exists i) (p = p_i) \}.$

$$R := \operatorname{cl}(P_{\operatorname{proj}}) \subseteq S_X(\mathfrak{C}).$$

Then $|R| \leq \beth_3(\max(I_S, 2^{|T|})).$

Lemma

There is $\eta \in EL$ such that $Im(\eta) \subseteq R$.

Proof.

By the general lemma and the choice of P and R, for every finite tuple $\bar{p} = (p_1, \ldots, p_n) \in S_X(\mathfrak{C})^n$ there is $\eta_{\bar{p}} \in EL$ such that $\eta_{\bar{p}}(p_i) \in R$ for all i. The net $(\eta_{\bar{p}})$ has a subnet convergent to some $\eta \in EL$. Then $\operatorname{Im}(\eta) \subseteq R$, as R is closed.

Remark

If $H \subseteq Z^Z$ is a group under \circ , then all elements of H have the same image.

< ロ > < 同 > < 三 > < 三 >

Lemma

There is $\eta \in EL$ such that $Im(\eta) \subseteq R$.

Proof.

By the general lemma and the choice of P and R, for every finite tuple $\bar{p} = (p_1, \ldots, p_n) \in S_X(\mathfrak{C})^n$ there is $\eta_{\bar{p}} \in EL$ such that $\eta_{\bar{p}}(p_i) \in R$ for all i. The net $(\eta_{\bar{p}})$ has a subnet convergent to some $\eta \in EL$. Then $\operatorname{Im}(\eta) \subseteq R$, as R is closed.

Remark

If $H \subseteq Z^Z$ is a group under \circ , then all elements of H have the same image.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\mathcal M$ – a minimal left ideal of EL

Corollary

There is an idempotent $u \in \mathcal{M}$ such that $Im(u) \subseteq R$. For such u, for all $h \in u\mathcal{M}$, $Im(h) \subseteq R$.

Proof.

By the last lemma, choose $\eta \in EL$ with $Im(\eta) \subseteq R$. Take $g \in \mathcal{M}$. Then $Im(\eta g) \subseteq R$ and $\eta g \in \mathcal{M}$. Choose an idempotent $u \in \mathcal{M}$ such that $\eta g \in u\mathcal{M}$. It works by the last remark.

Corollary

The restriction map $F: u\mathcal{M} \to R^R$ is a group isomorphism onto $\operatorname{Im}(F)$. Thus, $|u\mathcal{M}| \leq |R^R| \leq \beth_4(\max(l_S, 2^{|\mathcal{T}|}))$.

< ロ > < 同 > < 三 > < 三 >

 $\mathcal M$ – a minimal left ideal of EL

Corollary

There is an idempotent $u \in \mathcal{M}$ such that $Im(u) \subseteq R$. For such u, for all $h \in u\mathcal{M}$, $Im(h) \subseteq R$.

Proof.

By the last lemma, choose $\eta \in EL$ with $Im(\eta) \subseteq R$. Take $g \in \mathcal{M}$. Then $Im(\eta g) \subseteq R$ and $\eta g \in \mathcal{M}$. Choose an idempotent $u \in \mathcal{M}$ such that $\eta g \in u\mathcal{M}$. It works by the last remark.

Corollary

The restriction map $F: u\mathcal{M} \to R^R$ is a group isomorphism onto $\operatorname{Im}(F)$. Thus, $|u\mathcal{M}| \leq |R^R| \leq \beth_4(\max(I_S, 2^{|\mathcal{T}|}))$.

イロト イポト イラト イラト

Proof.

By the last corollary, F is well-defined, and it is clearly a homomorphism. For injectivity, consider $h_1, h_2 \in u\mathcal{M}$ with $F(h_1) = F(h_2)$, i.e. $h_1|_R = h_2|_R$. Since $Im(u) \subseteq R$, we get $h_1u = h_2u$. But $h_1u = h_1$ and $h_2u = h_2$.

Using propositions from the slide on reductions, we get

Corollary

The Ellis group of any flow $S_X(\mathfrak{C})$ is bounded by $\beth_5(|\mathcal{T}|)$. The Ellis group of the flow $S_{\overline{c}}(\mathfrak{C})$ is bounded by $\beth_5(|\mathcal{T}|)$.

Proposition

Under NIP, instead of R one can use the set of global types invariant over a small model M, say of cardinality |T|. Thus: the Ellis group of any flow $S_X(\mathfrak{C})$ is bounded by $\beth_3(|T|)$, the Ellis group of the flow $S_{\overline{c}}(\mathfrak{C})$ is bounded by $\beth_2(|T|)$.

Proof.

By the last corollary, F is well-defined, and it is clearly a homomorphism. For injectivity, consider $h_1, h_2 \in u\mathcal{M}$ with $F(h_1) = F(h_2)$, i.e. $h_1|_R = h_2|_R$. Since $Im(u) \subseteq R$, we get $h_1u = h_2u$. But $h_1u = h_1$ and $h_2u = h_2$.

Using propositions from the slide on reductions, we get

Corollary

The Ellis group of any flow $S_X(\mathfrak{C})$ is bounded by $\beth_5(|\mathcal{T}|)$. The Ellis group of the flow $S_{\overline{c}}(\mathfrak{C})$ is bounded by $\beth_5(|\mathcal{T}|)$.

Proposition

Under NIP, instead of R one can use the set of global types invariant over a small model M, say of cardinality |T|. Thus: the Ellis group of any flow $S_X(\mathfrak{C})$ is bounded by $\beth_3(|T|)$, the Ellis group of the flow $S_{\overline{c}}(\mathfrak{C})$ is bounded by $\beth_2(|T|)$.

Proof.

By the last corollary, F is well-defined, and it is clearly a homomorphism. For injectivity, consider $h_1, h_2 \in u\mathcal{M}$ with $F(h_1) = F(h_2)$, i.e. $h_1|_R = h_2|_R$. Since $Im(u) \subseteq R$, we get $h_1u = h_2u$. But $h_1u = h_1$ and $h_2u = h_2$.

Using propositions from the slide on reductions, we get

Corollary

The Ellis group of any flow $S_X(\mathfrak{C})$ is bounded by $\beth_5(|\mathcal{T}|)$. The Ellis group of the flow $S_{\overline{c}}(\mathfrak{C})$ is bounded by $\beth_5(|\mathcal{T}|)$.

Proposition

Under NIP, instead of R one can use the set of global types invariant over a small model M, say of cardinality |T|. Thus: the Ellis group of any flow $S_X(\mathfrak{C})$ is bounded by $\beth_3(|T|)$, the Ellis group of the flow $S_{\overline{c}}(\mathfrak{C})$ is bounded by $\beth_2(|T|)$.

Idea of the proof of absoluteness of the Ellis group

 $\mathfrak{C}_1 \succ \mathfrak{C}_2$ – monster models $\pi_{12} \colon S_X(\mathfrak{C}_1) \to S_X(\mathfrak{C}_2)$ – the restriction map $\mathcal{M}_i \triangleleft EL(S_X(\mathfrak{C}_i))$ – a minimal left ideal (for i = 1, 2)

Idea of the proof

- Find idempotents u₁ ∈ M₁ and u₂ ∈ M₂ with bounded images such that π₁₂|_{Im(u₁)} : Im(u₁) → Im(u₂) is a homeomorphism. (This is complicated; the sets Im(u₁) and Im(u₂) will be contained in suitably chosen sets as R above.)
- **2** This gives us the induced homeomorphism π'_{12} : $\operatorname{Im}(u_1)^{\operatorname{Im}(u_1)} \to \operatorname{Im}(u_2)^{\operatorname{Im}(u_2)}$.
- ③ Let F_i : $u_i \mathcal{M}_i \to \operatorname{Im}(u_i)^{\operatorname{Im}(u_i)}$ be the restriction map for i = 1, 2. As before, F_i is a group isomorphism onto $\operatorname{Im}(F_i)$.
- Show that $\pi'_{12}|_{\operatorname{Im}(F_1)}$: $\operatorname{Im}(F_1) \to \operatorname{Im}(F_2)$ is an isomorphism.
- Then $F_2^{-1} \circ \pi'_{12}|_{\operatorname{Im}(F_1)} \circ F_1 \colon u_1 \mathcal{M}_1 \to u_2 \mathcal{M}_2$ is an isomorphism that we are looking for.

$$u_{1}\mathcal{M}_{1} \xrightarrow{F_{1}} \mathsf{Im}(F_{1}) \subseteq \mathsf{Im}(u_{1})^{\mathsf{Im}(u_{1})}$$
$$\downarrow^{\pi'_{12}|_{\mathsf{Im}(F_{1})}} \qquad \qquad \downarrow^{\pi'_{12}}$$
$$u_{2}\mathcal{M}_{2} \xrightarrow{F_{2}} \mathsf{Im}(F_{2}) \subseteq \mathsf{Im}(u_{2})^{\mathsf{Im}(u_{2})}$$