A NON-ARCHIMEDEAN AX-LINDEMANN THEOREM

François Loeser

Sorbonne University, formerly Pierre and Marie Curie University, Paris

Model Theory of Valued fields Institut Henri Poincaré, March 8, 2018

Joint work with Antoine Chambert-Loir

AX-LINDEMANN

THEOREM (LINDEMANN-WEIERSTRASS)

Let x_1, \dots, x_n be \mathbb{Q} -linearly independent algebraic numbers. Then $\exp(x_1), \dots, \exp(x_n)$ are \mathbb{Q} -algebraically independent.

Geometric version due to Ax:

Let

$$p: \begin{cases} \mathbb{C}^n \to (\mathbb{C}^\times)^n \\ (x_1, \cdots, x_n) \mapsto (\exp(x_1), \cdots, \exp(x_n)). \end{cases}$$

THEOREM (AX)

Let V be in irreducible closed algebraic susbset of $(\mathbb{C}^{\times})^n$. Let $W \subset p^{-1}(V)$ be a maximal irreducible closed algebraic subset. Then W is a \mathbb{C} -translate of a linear subset defined over \mathbb{Q} .

AX-LINDEMANN. P. 3

HYPERBOLIC AX-LINDEMANN

Let \mathfrak{H} denote the Poincaré half-plane, $j:\mathfrak{H}\to\mathbb{C}$ the modular function, and

$$p: \begin{cases} \mathfrak{H}^n \to \mathbb{C}^n \\ (x_1, \dots, x_n) \mapsto (j(x_1), \dots, j(x_n)). \end{cases}$$

THEOREM (PILA)

Let V be in irreducible closed algebraic sushset of \mathbb{C}^n . Let $W \subset p^{-1}(V)$ be a maximal irreducible closed algebraic subset. Then W is defined by a family of equations of the form

$$z_i = c_i, c_i \in \mathfrak{H}, or z_k = g_{k\ell} z_\ell, g_{k\ell} \in PGL_2(\mathbb{Q}).$$

Generalized by Pila-Tsimerman, Peterzil-Starchenko, Klingler-Ullmo-Yafaev to general quotients of bounded symetric domains by arithmetic subgroups.

Key ingredient in Pila's approach to André-Oort conjecture.

AX-LINDEMANN. P. 4

MUMFORD-SCHOTTKY CURVES

Fix a finite extension F of \mathbb{Q}_p . A subgroup Γ of $\operatorname{PGL}_2(F)$ is a Schottky subgroup if it is discrete, torsion free and finitely generated. Such groups are always free (Ihara).

One says Γ is arithmetic if it is a subgroup of $PGL_2(K)$, with K a number field contained in F.

The limit set \mathcal{L}_{Γ} is defined as the set of limit points in $\mathbb{P}^1(\mathbb{C}_p)$: $\lim \gamma_n x$, γ_n distinct elements of Γ , $x \in \mathbb{P}^1(\mathbb{C}_p)$. It is closed, and perfect as soon as the rank g of Γ is ≥ 2 .

Set $\Omega_{\Gamma} = (\mathbb{P}^1)^{an} \setminus \mathscr{L}_{\Gamma}$. It is an analytic domain.

THEOREM (MUMFORD)

There exists a smooth projective F-curve X $_{\Gamma}$ *of genus g such that*

$$\Omega_{\Gamma}/\Gamma \simeq (X_{\Gamma})^{an}.$$

We fix arithmetic Schottky subgroups Γ_i , $1 \le i \le n$, each of rank ≥ 2 .

Set $\Omega = \prod_{1 \le i \le n} \Omega_{\Gamma_i}$ and $X = \prod_{1 \le i \le n} X_{\Gamma_i}$. We have an analytic uniformization morphism

$$p: \Omega \to X^{an}$$
.

If *L* is an extension of *F*, we say $W \subset \Omega_L = \Omega \otimes L$ is flat if it is an irreducible algebraic subset defined by equations of the form

$$z_i = c_i$$
, $c_i \in \Omega_{\Gamma_i}(L)$, or $z_j = gz_i$, $g \in PGL_2(F)$.

If, furthermore the g's can be taken such that $g\Gamma_i g^{-1}$ and Γ_j are commensurable we say W is geodesic.

Fix arithmetic Schottky subgroups Γ_i , $1 \le i \le n$, $\mathrm{rk} \ge 2$, $\Omega = \prod_{1 \le i \le n} \Omega_{\Gamma_i}$, $X = \prod_{1 \le i \le n} X_{\Gamma_i}$, $p : \Omega \to X^{an}$.

THEOREM 1 (CHAMBERT-LOIR - L.)

Let V be an irreducible closed algebraic subset of X, W a maximal irreducible closed algebraic subset of $p^{-1}(V^{an})$. Then every irreducible component of $W_{\mathbb{C}_p}$ is flat.

A small (equivalent) variant:

THEOREM 1' (CHAMBERT-LOIR - L.)

Let V be an irreducible closed algebraic subset of X, W a maximal irreducible closed algebraic subset of $p^{-1}(V^{an})$. Assume W is geometrically irreducible. Then W is flat.

A bialgebricity statement:

THEOREM 2 (CHAMBERT-LOIR - L.)

Let W a closed algebraic subset of Ω . Assume W is geometrically irreducible. Then the following are equivalent:

- W is geodesic;
- $oldsymbol{0}$ p(W) is closed algebraic;
- the dimension of the Zariski closure of p(W) is equal to the dimension of W.

A key ingredient in Pila's proof is the

THEOREM (PILA-WILKIE)

Let $X \subset \mathbb{R}^N$ be definable in some o-minimal structure. Set $X^{tr} = X \setminus \cup$ semi-algebraic curves in X. Then, for any $\varepsilon > 0$,

$$N_{X^{tr}}(\mathbb{Q},T)\leq C_{\varepsilon}T^{\varepsilon}.$$

Here $N_{X^{tr}}(\mathbb{Q}, T)$ denotes the number of rational points in X^{tr} of height $\leq T$.

We will use the following *p*-adic version:

THEOREM (CLUCKERS-COMTE-L.)

Let $X \subset \mathbb{Q}_p^N$ be a subanalytic subset.

Set $X^{tr} = X \setminus Semi$ -algebraic curves in X. Then, for any $\varepsilon > 0$,

$$N_{X^{tr}}(\mathbb{Q},T)\leq C_{\varepsilon}T^{\varepsilon}.$$

INGREDIENTS IN THE PROOF. P. 9

Note: it is the use of heights that requires the "arithmeticity" condition.

Our strategy of proof follows that of Pila despite some important differences (Pila: parabolic elements \neq Us: hyperbolic elements).

Especially helpful is the nice "ping-pong" geometric description of fundamental domains for p-adic Schottky groups.

INGREDIENTS IN THE PROOF. P. 10

Take fundamental domains \mathcal{F}_i for each Γ_i and set $\mathcal{F} = \prod \mathcal{F}_i$.

Set $m = \dim W$ and consider the set R of $g \in PGL_2^n(F)$ such that

$$g_2 = \cdots = g_m = 1$$

and

$$\dim(gW\cap\mathscr{F}\cap p^{-1}(V^{an}))=m.$$

After some reductions, one may arrange that the number of K-rational points of R having height $\leq T$ is $\geq \lambda T^c$, with $\lambda, c > 0$ (R "has many K-rational points").

One uses that in a free group of rank g, the number of positive words of length ℓ is g^{ℓ} .

Now R(F) is definable thanks to the following easy lemma:

LEMMA

Let F be a finite extension of \mathbb{Q}_p contained in \mathbb{C}_p and let V be an algebraic variety over F. Let Z be a rigid F-subanalytic subset of $V(\mathbb{C}_p)$. Then $Z(F) = Z \cap V(F)$ is an F-subanalytic subset of V(F).

Thus, applying the p-adic Pila-Wilkie theorem [CCL] to R(F) and using that R "has many K-rational points", one deduces that the stabilizer of W in Γ is large.

INGREDIENTS IN THE PROOF. P. 12

This allows to conclude by induction on *n*, using the following

LEMMA

Let k be a field of characteristic zero. Let B be an integral k-curve in $(\mathbb{P}^1)^n$ having a smooth k-rational point. Let Γ be the stabilizer of B in $(\operatorname{Aut}\mathbb{P}^1)^n$, with image Γ_1 in $\operatorname{Aut}\mathbb{P}^1$. Assume that Γ_1 contains an element of infinite order. Then, one of the following holds:

- $oldsymbol{1} p_{1|B}$ is constant;
- ② $p_{1|B}$ is an isomorphism and the components of its inverse are constant or homographies;
- there exists a two-element subset of $\mathbb{P}^1(\bar{k})$ invariant under every element of Γ_1 .

A main ingredient in the proof of the Pila-Wilkie theorem is the existence of Yomdin-Gromov parametrizations, namely

Let $X \subset [0,1]^N$ definable in some o-minimal structure, of dimension n. For any r > 0, there exists $g_i : [0,1]^n \to X$ definable and \mathscr{C}^r such that $X = \cup \operatorname{Im}(g_i)$ and $\|g_i\|_{\mathscr{C}^r} \le 1$.

Over \mathbb{Q}_p , CCL prove a similar statement for subanalytic sets $X \subset \mathbb{Z}_p^N$ with now $g_i : P_i \subset \mathbb{Z}_p^n \to X$.

Over $\mathbb{C}((t))$, replace \mathbb{Z}_p by $\mathbb{C}[[t]]$, and the finite family g_i by a definable family g_t parametrized by some $T \subset \mathbb{C}^K$.

Main issue Yomdin-Gromov parametrizations are used via the Taylor formula for the *g*_i's (through the Bombieri-Pila determinant method).

But in the non-archimedean setting, except for r=1, we don't know whether subanalytic \mathscr{C}^r (piecewise) satisfy the Taylor formula up to order r. Fortunately we are actually able to arrange the existence of parametrizations satisfying the Taylor formula.

Application 1: Pila-Wilkie over \mathbb{Q}_p .

Application 2: Bounds for rational points over $\mathbb{C}((t))$.

A geometric analogue of a result by Bombieri-Pila:

THEOREM (CLUCKERS-COMTE-L.)

Let $X \subset \mathbb{A}^N_{\mathbb{C}((t))}$ be closed irreducible algebraic of degree d and dimension n. For $r \geq 1$, let $n_r(X)$ be the dimension of the Zariski closure of $X(\mathbb{C}[[t]]) \cap (\mathbb{C}[t]_{< r})^N$ in $(\mathbb{C}[t]_{< r})^N \simeq \mathbb{C}^{rN}$. Then

$$n_r(X) \leq r(n-1) + \lceil \frac{r}{d} \rceil.$$

We have a trivial bound

$$n_r(X) \leq rn$$
,

thus our result is meaningful as soon as d > 1.

Thank you for your attention!