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A CLASS E OF FINITE GRAPHS

IS SOMtWHerLDLN5E_T IF

FOR SOME d EN EVERY GRAPH

IS d- SHALLOW MINOR OF A

GRAPH IN E
.

tfG FHEE ( H >a6 )
.

-

H CAN BE OBTAINED FROM A

SUB GRAPH OF G BY CONTRACTING

SOME SUB GRAPHS WITH RADIUS { d
.

=Nod kI={ y ; distfxiy) < d }

VCG) c- Ndo G) ⇐7 RADIUS(G)Ed

FOR SOME XEV (G)
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d=3
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-

Auorapt 's

.IM#P.hEeeCY
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DEFD

C Is NOWHEREDENT-lf.IT is

NOT SOMEWHERE DENSE .

#

EXPLICITELY :

FOR EVERY DEN THERE IS A GRAPH Gd
SUCH THAT Gd FAILS TO BE A

SHALLOW MINOR AT DEPTH d OF

A GRAPH IN @
.

-

td : E Td g- ALL GRAPHS

JN & P
.

OSSONA DE MENDEZ ,

SPARSITY
,

SPRINGER2012 .
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EXAMPLES

�1� TREES

�2� PLANAR GRAPHS

�3� PROPER MINOR CLOSED

CLASSES EEEY.FFFE.to#

�4� { G ;
 LY G) Ed }

�5� G- QUASI PLANAR GRAPHS

�6� ERDOS CLASSES

e. g .

{ G
. ,Gz , ... ,Gn , ... }

Gi WITH PROPERTIES

i< A ( Gn. ) < GRTHCG ;)
is .X( G . )

-
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WHY SPARSITY ?

"
ALMOST

"

LINEARLY MANY
EDGES :

IECG)l<_w( 6711+04 )
.

D (G) = max
Echl

d HeGodNCHI

( MAXIMAL EDGE DENSITY OF )
A SHALLOW MINOR OF G AT

DEPTH d

/'THM] ( JN + POM 2008 )

FOR A CLASS @ THE FOLLOWING

ARE EQUIVALENT :

@ C IS NOWHERE DENSE

�2� FOR EVERY d

him

.my#E=O

.

Cec log IVC G) I
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SAME CLASSIFICATION FOR
TOPOLOGICAL MINORS :

.hu/SHA-kOWt0P0L0G1CAL-_

MINOR OF A GRAPH G

ATDEPTHd.lt

THERE IS A SUBDIVISION H '

OF H WHERE EVERY EDGE

OF H IS SUBDIVIDED BY ATMOST

2d VERTICES AND H ' 15 ASUBGRAPH

OF G .

To

HIAG ,

EFD .

.
THMLT ifJ .N .tl?0.M . 2008 )

C Is NOWHERE DENSE IFF

FOR ANY d EGD §FmYpµs

_

ROBUST NOTIONS

SPARSE - DENSE DICHOTOMY
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72 CHARACTERISATIONS
OF

NOWHERE DENSE
×

SOMEWHERE DENSE
DICHOTOMY

a-

(EXPANS10Nhf-B0UNDtD

( FOR EVERY d sgnfpg
Tak) 's a)

111

C Td A DEGENERATED CLASS

OF GRAPHS

111

Efcd )

•
M¥ . .  . .



€4 ( CHARACTERISATIONS
6b

OF NOWHERE DENSE

ANB BOUNDED EXPANSION 't

FOR A CLASS E

@ QQ 's ND
legal .=o

�2� fd limsut logicalGell
eogEd(61=0limsup -

�3� ttd geq loglcol

�4� td limsup w( G) < a

GECOD
�5� & CHARACTERISATION

( QUASIWIDE )

�6� X LOWTREEDEPTH
DECOMPOSITION

�7� VC DENSITY

�8� NEIBORHOOD COMPLEXITY

�9� MODEL CHECKING

@ COUNTING

@ CATEGORIES

-

DVORA
'K ,

THOMAS ,
KRA 'L

,
GROHE )

KREUTZER ,
GAJARSKY ,

HLINENY ,

PILIPCZUK ,
TORUNCZYK , REIDL )

DEMAINE ,
ROSSMANITH ,

GAGO ,

KIERSTED ,
ZHU ,

D. YANG ,
WOOD ,

DAWAR ,
ATSERIAS ) ROSSMAN ,

NORIN
d @ d
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BOUNDED EXPANSION

BOUNDED X , Xp ,
BOUNDED to

LINEAR ALGORITHMS

VS

NOWHERE DENSE
BOUNDED W , Wp ,

ALMOST
LINEAR Tp

ALMOST LINEAR ALGORITHMS
n1+O( 1)

-

Ee ND - BE

BOUNDED W UNBOUNDED X
' '

ERDO "s CLASSES
"



7.

CONNECTION TO MODEL

THEORY - STABILITY

A CLASS C OF FINITE GRAPHS

IS STABLED IF FOR EVERY

FORMULA 4( Eiy )

THERE EXISTS N( 4,4 ) WHICH

BOUNDS ALL HALF GRAPHS

REPRESENTED BY y IN ALL

GRAPHS GE @ .

TUPLES ai. ,
... ,En , 5.,

...,5n
REPRESENT HALF GRAPH IN G

IF Gt4(ai,5j ) IFF is j .
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PODEWSKI
,

ZIEGLER ( 1978 )
H . ADLER ,

1. ADLER ( 2014 )

THMWQIFY
IS NOWHERE DENSE THEN

IT 15 STABLE .

�2� IF E IS MONOTONE € CLOSED

ON SUBGRAPHS ) AND STABLE

THEN IT IS NOWHERE DENSE .

PROP
On NOWHERE DENSE I SUPER FLAT ⇒ STABLE

�2� STABLE + MONOTONE + SOMEWHERE DENSE

I
FORMULA y( ×

, Y ) REPRESENTING

ANY FINITE (

HALFIGRAPH
�1�

Me

CORD

NOWHERE DENSE = STABLE

FOR MONOTONE CLASSES OF GRAPHS
.
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FINITE REFINEMENT

PILIPCZUK ,
SIEBERTZ ,

TORUIJCZYK
( 2017 )

THMLT
THERE ARE FUNCTIONS f :N3→N

g :N→N

WITH THE FOLLOWING PROPERTIES :

- IF G is A GRAPH WITH Kthgq,G
• IF 4 ( tif ) 15 A FORMULA WITH

QRANK of AND WITH d FREE VARIABLES

THEN tf ( Iiy ) REPRESENTS IN G

ONLY HALF GRAPHS WITH E ftp.dit )
VERTICES .

Ms
*

PROOF USES SEVERAL FOF 72 )
CHARACTERISATIONS OF ND

INSTEAD OF COMPACTNESS

USES GAIFMAN LOCALITY
LEMMA

.

÷ADDED IN PROOF :  PRESENTLY
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FUTURE WORK

- MODEL THEORETIC SETTING

OF OTHER CHARACTERISATIONS

( OF SPARSE - DENSE DICHOTOMY )

- MONOTONE nd HEREDITARY
( EMBEDINGS )

- INTERPRETATIONS OF

BOUNDED EXPANSION CLASSES

CHARACTERISED ( LICS 18 ? )
( DIDEROT ON FRIDAY )
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RAMSEY THEORY
IN ITS

MODEL THEORETIC RELEVANCE
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mmmm

[RAMSEY COMBINATORKS

name
]

#h molfEL.lt#oRYw

/ #
fmmzTOPOLOGICAL

'Dynamical

"

STRUCTURAL RAMSEY THEORY
"
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tft A CLASS .
OF L - STRUCTURES

WITH SUB OBJECTS .

FOR A ,
BEK ( Yf ) ALL

SUB OBJECTS OF B .

ISOMORPHIC TO A .

K Is

LAf-RAMSEY

IF

FOR EVERY BEK THERE EXISTS

( EK SUCH THAT

C- > ( B) IERDOI.DE#NARI
.

FOR EVERY PARTITION ( (A) = An U Gz

THERE EXISTS B' E (CB ) AND ioe{ 1,2 }

SUCH THAT ( Bf ) Eaio .

=
K ishmaelif IT IS

A - RAMSEY FOR EVERY AEK .
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K . LEEB PASCAL THEORIE

J . N
. ,

V. RODL

W .
DEUBER

_

SUB OBJECTS = EMBEDDINGS

-

TOP OF THE LINE  OF RAMSEY

|_RoPerte]

_

CLASSICAL EXAMPLES

- LINEAR ORDERS ( 6 )

- FINITE SETS + E

- K = { knineN}+suB
GRAPHS

- NOT VW BUT
"

PARAMETER
SETS

"

HALES - JEWETT THM
.

- NOT RADO THM BUT

YES FOR A SUITABLE

AXIOMAMZAMON [( mipic ) -SETD
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BASIC BUILDING BLOC

THMD

ftp.pgp.ytruo?0Ns

HARRINGTON )

FOR ANY RELATIONAL LANGUAGE L

tianya.fr#inrenswe

IS A RAMSEY CLASS

WITH RESPECT TO MONOTONE

EMBEDDING S .

Mrs.-> #
• - -

y7
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RAMSEY FOR FINITE MODELS

TIF ( J
.

HUBIEKA .J.N . 2016 )

THE CLASS OF ALL LINEARLY

0RDEREDL-STRUCTURES##t

( WITH L CONTAININGRELATIONSAND FUNCTION SYMBOLS )

IS A RAMSEY CLASS .

-

AA =( A ,(RµiREL)•(f*ifeL),<
Be = ( B , ( Rpg ; REL ) , (ftp.ifeDKF}

F : A-713 is AN EMBEDDING M$ -7 MB

IF IT SATISFIES :

- INJECTIVE

- MONOTONE W.R.tn Epa )
-< NB

- PRESERVES ALL Raf
- F( fact ,

. . .

, xp ))==

fµ( Fkn ) ,
... ,Fkp7)

"

EMBEDDING 5 PRESERVE CLOSURES
"
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:@
THE CLASS OF ORDERED

STEINER SYSTEMS IS

RAMSEY .

PR0OF(OUTLlNE@)

(X ,B) STEINER SYSTEM

:-

C¥ )

txtyex F ! BEBFYYEB)

_

DEFINE f : ( f) → ( px )
f- ( xiy )=B×y -

USE ( REFINEMENT ) OF RAMSEY

CLASSES OF MODELS
+

EXISTENCE AND COMPLETION

OF STEINER SYSTEMS .

D
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TOWARDS CHARACTERISATION
OF RAMSEY CLASSES

-

AND / OR

HIDDEN SYMMETRIES

OF RAMSEY CLASSES

non

PARADOX : RAMSEY CLASS

NEEDS AND IMPLIES
RIGIDITY

BUT ON THE OTHER

SIDE RAMSEY CLASSES

COME FROM HIGHLY

SYMMETRIC SITUATION .



qq.GE?EmtmTm
TL - AMALGAMATION

RAMSEY CLASSapassf
Thi

'
-

FRAISSE
LIMIT



20
.

- EVERY HEREDITARY RAMSEY
CLASS WITH JOINT EMBEDDING

PROPERTY IS AN AMALGAMATION
CLASS .

-
FRAISSE LIMIT 15 ULTRA HOMOGENEOUS

CHARACTERISATION OF ULTRA HOMOGENEOUS

a
CHARACTERISATION OF RAMSEY

CLASSES

( TRUE IN ALL CASES WITH

KNOWN CHARACTERISATION

OF ULTHZA HOMOGENEOUS
STRUCTURES )

GRAPHS ,
PARTIAL ORDERS

,

TOURNAMENTS ,
oo .

WORK IN PROGRESS

_

FOR ULTRA HOMOGENEOUS :

LACHLAN ,
WOODROW ,

CHERLIN ,

SHELAH ,
SCHMERL ,

...
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IN GENERAL
,

FOR W - CATEGORICAL
EXPANSIONS

ONE CANNOT COMPLETE
SCHEMA

( EVAN 's LECTURE )
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TF ( EVANS ,

HUBIEKA
,

N . 20171

L LANGUAGE WITH RELATIONS

AND PARTIAL FUNCTIONS .

LET K BE A FREE  AMALGAMATION
CLASS .

THEN THE CLASS 5£ OF  ALL

ORDERED STRUCTURES FROM K

IS A RAMSEY CLASS .

c-

THMLT ( HUBIEKA
, N . 20167

LET L BE A FINITE LANGUAGE

CONTAINING RE
,

LET f BE A SET

OF FINITE CONNECTED L - STRUCTURES
.

THEN THE FOLLOWING ARE EQUIVALENT :

@ FORBH ( F ) HAS PRECOMPACT

RAMSEY EXPANSION WITH

EXPANSION PROPERTY .

�2� FORB .h( F) HAS W - CATEGORICAL

UNIVERSAL STRUCTURE .

�3� THERE EXISTS REGULAR FAMILYF
'

SUCH THAT FoRBµ( F) =Fab( F ' ) .
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'

K A CLASS OF COUNTABLE

STRUCTURES .At E K is

UNIVERSAL IF EVERY TAPE K
EMBEDDS TO Dt •

RADO ,
HENSON ,

KOMJA
'

TH
,

PACH
,

MEKLER ,
CHERLIN ,

SHE LAH , SHI
,

d  A @

EXISTENCE OF UNIVERSAL OBJECT

Is THE TEST FOR RAMSEY CLASS

-

WHEN A CLASS E HAS A FINITE

HOM - UNIVERSAL OBJECT U ?

FOR FORB ( f )
,

F FINITE

IFF
F A FINITE SET OF TREES

( N . ,
TARDIF )
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Ttf ( N
. ,

OSSONA DE MENDEZ

. 2006 )
FOR ANY BOUNDED

EXPANSION

CLASS E THE FOLLOWING HOLDS :

FOR ANY FINITE SET F
.

OF CONNECTED GRAPHS THERE

EXISTS A FINITE GRAPHDe
SUCH THAT FOR EVERY GEE

HOLDS :

£+>G⇐>G → DE
_

ANOTHER CHARACTERISATION
OF B. E. ?

( YES , MODULO ANOTHER
ERDO 'S - HAJNAL

)

RELATED TO FO DEFINABLE
CSP PROBLEMS .

e-

BOUNDED EXPANSION
H

FOR EVERY FINITE F F Df
"

ALL HOMOMORPHISM DUALITIES
"

_

IT
OPEN
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HOMOMORPHISM ORDER

OF STRUCTURES INTERESTING

µ* E BB iff MA → rd
FHOMOMORPHISM

( E.=)
ALL COUNTABLE STRUCTURES

PR0BLE€) ( N .

,
SHELAH )

LET G) Gz BE MAXIMAL
ANTICHAIN IN @E)

( 1. E . G
, -# Gz AND THERE 15

NO G INCOMPARABLE WITH

BOTH G , AND Gz . )

IS IT TRUE THAT THEN EITHER

G
,

OR Gz IS ( HOMOMORPHISM )

EQUIVALENT TO A FINITE GRAPH?

-

G. =D Gz= Hz a- FREE

HENSON
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