Going further 00000000

Modeling Limits

Jaroslav Nešetřil

Patrice Ossona de Mendez

Charles University Praha, Czech Republic

LIA STRUCO

CAMS, CNRS/EHESS Paris, France

- IHP 2018 -

イロト 不得下 イヨト イヨト

ъ

Going further 00000000

Limits of Structures

э

メロト メタト メヨト メヨト

FO-limits? 00000000

Classical Graph Limits

Left limits		Local limits
assumption	Dense $(m = \Omega(n^2))$	Sparse (bounded Δ)
sample	Isomorphism type of $G[X_1, \ldots, X_p]$	Isomorphism type of $B_r(G, X)$
distribution	Exchangeable random graph (Aldous '81, Hoover '79)	Unimodular distribution (Benjamini–Schramm '01)
analytic limit object	$\begin{array}{c} \mbox{Graphon} \\ \mbox{measurable } W: [0,1]^2 \rightarrow [0,1] \\ \mbox{(Lovász et al. '06)} \end{array}$	$\begin{array}{c} \text{Graphing} \\ d \text{ measure preserving involutions} \\ \text{(Elek '07)} \end{array}$

FO-limits?

Going further 00000000

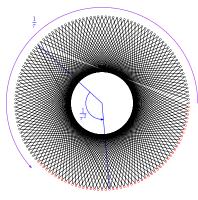
Fibonacci Sequence

- G_1 o
- $G_2 \quad \mathbf{O} \longrightarrow \mathbf{O}$
- *G*₃ **0—0**
- G_4 o-o-o-o
- G_5 **o-o-o-o-o**
- G_6 **o-o-o-o-o-o-o-o-o-o**

FO-limits?

Going further 00000000

Fibonacci Sequence



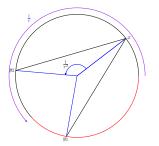
 G_{11}

æ

メロト メタト メヨト メヨト

FO-limits?

Fibonacci Sequence Local Limit



In \mathbb{R}/\mathbb{Z} :

$$x \sim y \iff x \equiv y \pm \frac{1}{\tau^2}$$

Black $(x) \iff x \in \left[0, \frac{1}{\tau}\right]$

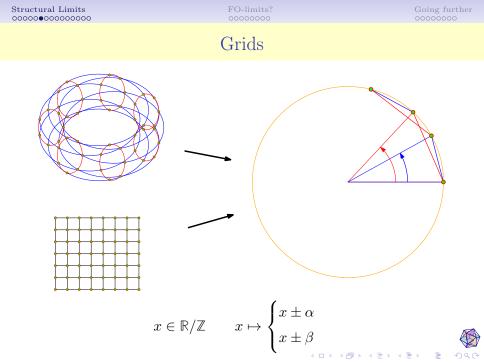
Graphing: two views

D measure preserving Borel involutions f_1, \ldots, f_d Borel graph + Mass Transport

$$\int_A \deg_B(v) \, \mathrm{d}v = \int_B \deg_A(v) \, \mathrm{d}v$$

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

ъ

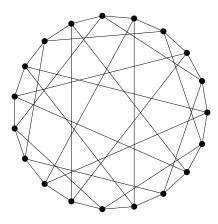


 $\begin{array}{c} {\rm Structural\ Limits}\\ {\rm 000000}{\bullet}{\rm 00000000} \end{array}$

FO-limits?

Going further 00000000

High-girth Regular Graphs



 $(x,y) \in (\mathbb{R}/\mathbb{Z}) \times (\mathbb{R}/\mathbb{Z}) \qquad (x,y) \mapsto \begin{cases} (x,y) \pm (\alpha,0) \\ (x,y) \pm (\beta,\beta) \\ (x,y) \pm (\beta,\beta) \end{cases}$

Going further

How to handle unbounded degrees?

Instead of

the isomorphism type of the radius d ball around v,

 $\operatorname{consider}$

the local type of v for d-local formulas.

FO-limits?

Going further

Local Formulas

Definition

A formula ϕ is *local* if there exists r such that satisfaction of ϕ only depends on the r-neighborhood of the free variables:

$$G \models \phi(v_1, \dots, v_p) \iff G[N_r(\{v_1, \dots, v_p\})] \models \phi(v_1, \dots, v_p).$$

Definition

A sequence (G_n) is $\operatorname{FO}_1^{\operatorname{local}}$ -convergent if, for every local formula $\phi(x)$ with one free variable, the probability that G_n satisfies $\phi(v)$ for random $v \in V(G_n)$ converges as $n \to \infty$.

That is: convergence of

$$\langle \phi, G_n \rangle := \frac{|\{v : G_n \models \phi(v)\}|}{|G_n|}$$

.

Stone pairing

Let ϕ be a first-order formula with p free variables and let G be a graph (or a structure with countable signature).

The *Stone pairing* of ϕ and *G* is

$$\langle \phi, G \rangle = \Pr(G \models \phi(X_1, \dots, X_p)),$$

for independently and uniformly distributed $X_i \in G$. That is:

$$\langle \phi, G \rangle = \frac{|\phi(G)|}{|G|^p}.$$

Remark

If ϕ is a sentence then $\langle \phi, G \rangle \in \{0, 1\}$.

FO-limits?

Structural Limits

Definition

A sequence (G_n) is *X*-convergent if, for every $\phi \in X$, the sequence $\langle \phi, G_1 \rangle, \ldots, \langle \phi, G_n \rangle, \ldots$ is convergent.

FO_{0}	Sentences	Elementary limits
QF	Quantifier free formulas	Left limits
$\mathrm{FO}_1^{\mathrm{local}}$	Local formulas with 1 free variable	Local limits
FO_1	Formulas with 1 free variable	FO ₁ -limits
$\mathrm{FO}^{\mathrm{local}}$	Local formulas	$\mathrm{FO}^{\mathrm{local}}$ -limits
FO	All first-order formulas	FO-limits

Remark (Sequential compactness)

Every sequence has an X-convergent subsequence.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

FO-limits?

Going further 00000000

Modelings

Definition

A *totally Borel graph* is a graph on a standard Borel space s.t. every first-order definable set is Borel.

A modeling **A** is totally Borel graph with a probability measure $\nu_{\mathbf{A}}$.

The Stone pairing extends to modelings:

$$\langle \phi, \mathbf{A} \rangle = \nu_{\mathbf{A}}^{\otimes p}(\phi(\mathbf{A})) = \Pr_{\nu_{\mathbf{A}}}[\mathbf{A} \models \phi(X_1, \dots, X_p)].$$

э

(日)、(四)、(日)、(日)、

FO-limits?

Going further 00000000

Modeling FO_1^{local} -Limits

Theorem (Nešetřil, OdM 2016+)

Every $\operatorname{FO}_1^{\operatorname{local}}$ -convergent sequence $(G_n)_{n \in \mathbb{N}}$ of graphs (or structures with countable signature) has a modeling $\operatorname{FO}_1^{\operatorname{local}}$ -limit **L**.

FO-limits?

Going further 00000000

Modeling FO_1 -Limits

Theorem (Nešetřil, OdM 2016+)

Every $\operatorname{FO}_1^{\operatorname{local}}$ -convergent sequence $(G_n)_{n \in \mathbb{N}}$ of graphs (or structures with countable signature) has a modeling $\operatorname{FO}_1^{\operatorname{local}}$ -limit **L**.

+Sentences:

Theorem (Nešetřil, OdM 2016+)

Every FO₁-convergent sequence $(G_n)_{n \in \mathbb{N}}$ of graphs (or structures with countable signature) has a modeling FO₁-limit **L**.

FO-limits? 00000000

Modeling FO_1^* -Limits

Theorem (Nešetřil, OdM 2016+)

Every FO₁-convergent sequence $(G_n)_{n \in \mathbb{N}}$ of graphs (or structures with countable signature) has a modeling FO₁-limit **L**. + $\forall \phi \in \text{FO} \text{ s.t. } (\langle \phi, G_n \rangle)_{n \in \mathbb{N}}$ converges it also holds

$$\langle \phi, \mathbf{L} \rangle = 0 \quad \iff \quad \lim_{n \to \infty} \langle \phi, G_n \rangle = 0.$$

We denote this by

$$G_n \xrightarrow{\mathrm{FO}_1^*} \mathbf{L}.$$

Step 1: non standard construction (ultraproduct+Loeb measure) of a model **M** (not on a standard Borel space, only Fubini-like properties)

Step 1: non standard construction (ultraproduct+Loeb measure) of a model \mathbf{M} (not on a standard Borel space, only Fubini-like properties)

Step 2: let *T* be the sentences (in Friedman's $\mathcal{L}(Q_m)$ logic) of the form

$$\begin{cases} (Q_m x_1) \dots (Q_m x_p) \phi(x_1, \dots, x_p) & \text{if } \lim_{n \to \infty} \langle \phi, G_n \rangle > 0 \\ \neg (Q_m x_1) \dots (Q_m x_p) \phi(x_1, \dots, x_p) & \text{if } \lim_{n \to \infty} \langle \phi, G_n \rangle = 0 \end{cases}$$

By Friedman-Steinhorn theorem, T has a totally Borel model **L**.

Step 1: non standard construction (ultraproduct+Loeb measure) of a model **M** (not on a standard Borel space, only Fubini-like properties)

Step 2: let *T* be the sentences (in Friedman's $\mathcal{L}(Q_m)$ logic) of the form

$$\begin{cases} (Q_m x_1) \dots (Q_m x_p) \phi(x_1, \dots, x_p) & \text{if } \lim_{n \to \infty} \langle \phi, G_n \rangle > 0 \\ \neg (Q_m x_1) \dots (Q_m x_p) \phi(x_1, \dots, x_p) & \text{if } \lim_{n \to \infty} \langle \phi, G_n \rangle = 0 \end{cases}$$

By Friedman-Steinhorn theorem, T has a totally Borel model **L**.

Step 3: Adjust the probability measure.

$$\pi \Leftarrow \pi_r, \quad \text{where } \pi_r(X) = \sum_{i \in \lambda(\theta_i^r(\mathbf{L})) \neq 0} \frac{\lambda(X \cap \theta_i^r(\mathbf{L}))}{\lambda(\theta_i^r(\mathbf{L}))} \lim_{n \to \infty} \langle \theta_i^r, G_n \rangle.$$

æ

イロト イヨト イヨト イヨト

Convergence of Bounded Degree Graphs

For a sequence $(G_n)_{n \in \mathbb{N}}$ of graphs with degree $\leq d$ the following are equivalent:

- 1. the sequence $(G_n)_{n \in \mathbb{N}}$ is local convergent;
- 2. the sequence $(G_n)_{n \in \mathbb{N}}$ is FO₁^{local}-convergent;
- 3. the sequence $(G_n)_{n \in \mathbb{N}}$ is FO^{local}-convergent;

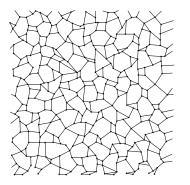
Theorem (Nešetřil, OdM 2012)

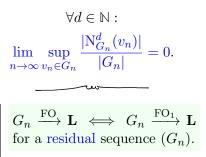
Every FO-convergent sequences of graphs with bounded degrees has a graphing FO-limit.

FO-limits?

Going further 00000000

Residual Sequences





・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Theorem (Nešetřil, OdM 2016+)

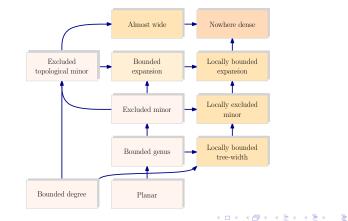
Every residual FO-convergent sequence $(G_n)_{n \in \mathbb{N}}$ of graphs has a modeling FO-limit **L**.

Modeling limits?

FO-limits?

Theorem (Nešetřil, OdM 2013, 2017)

If a monotone class C has modeling FO^{local}-limits then the class C is nowhere dense.



Going furthe

Sparsity

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Modeling limits for Nowhere dense?

Conjecture (Nešetřil, OdM)

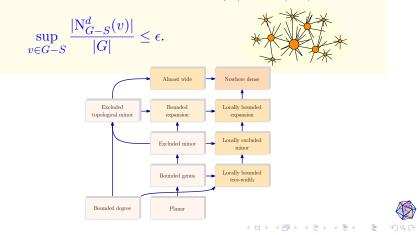
Every nowhere dense class has modeling FO-limits.

- true for bounded degree graphs (Nešetřil, OdM 2012)
- true for bounded tree-depth graphs (Nešetřil, OdM 2013)
- true for trees (Nešetřil, OdM 2016)
- true for plane trees and for graphs with bounded pathwidth (Gajarský, Hliněný, Kaiser, Kráľ, Kupec, Obdržálek, Ordyniak, Tůma 2016)

Modeling Limits of Nowhere Dense Sequences

Theorem (Nešetřil, OdM 2016)

A hereditary class of graphs \mathcal{C} is nowhere dense if and only if $\forall d, \forall \epsilon > 0, \forall G \in \mathcal{C}, \exists S \subseteq G \text{ with } |S| \leq N(d, \epsilon)$ such that



Modeling Limits of Quasi-Residual Sequences

(G_n) is quasi-residual if

$$\lim_{d\to\infty} \lim_{C\to\infty} \lim_{n\to\infty} \inf_{|S_n|\leq C} \sup_{v_n\in G_n-S_n} \frac{|\mathcal{N}^d_{G_n-S_n}(v_n)|}{|G_n|} = 0.$$

 $\leftrightarrow \epsilon$ -close to residual by removing $\leq C(\epsilon)$ vertices.

Theorem (Nešetřil, OdM 2016+)

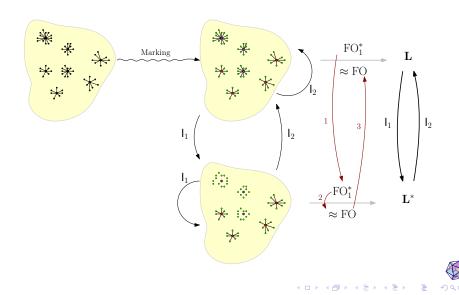
Every FO-convergent quasi-residual sequence of graphs has a modeling FO-limit.

Corollary

A monotone class C is nowhere dense if and only if every FO-convergent sequence of graphs in C has a modeling FO-limit.

Going further 00000000

Sketch of the Proof



Going further •0000000

Going further

Local-Global Convergence

• Defined from colored neighborhood metric (Bollobás and Riordan '11)

Definition (Local-Global Convergence for graphs with bounded degree; Hatami, Lovász, Szegedy '13)

A sequence of finite graphs $(G_n)_{n \in \mathbb{N}}$ with all degrees at most d is called *locally-globally convergent* if for every $r, k \geq 1$, the sequence $(Q_{Gn,r,k})_{n \in \mathbb{N}}$ of all k colorings of G_n converges in the Hausdorff distance inside the compact metric space of probability distributions over isomorphism types of rooted graphs with radius r and maximum degree d with total variation distance.

Distributionual Limit for X-convergence

Theorem (Nešetřil, OdM '12)

There are maps $G \mapsto \mu_G$ and $\phi \mapsto k(\phi)$, such that

- $G \mapsto \mu_G$ (injective if $X \supseteq QF$ or FO_0)
- $\langle \phi, G \rangle = \int_S k(\phi) \, \mathrm{d} \mu_G$
- A sequence $(G_n)_{n \in \mathbb{N}}$ is X-convergent iff μ_{G_n} converges weakly.

Thus if $\mu_{G_n} \Rightarrow \mu$, it holds

$$\int_{S} k(\phi) \,\mathrm{d}\mu = \lim_{n \to \infty} \int_{S} k(\phi) \,\mathrm{d}\mu_{G_n} = \lim_{n \to \infty} \langle \phi, G_n \rangle.$$

Note: $\mathrm{FO}_p \to \mathfrak{S}_p$ -invariance; $\mathrm{FO} \to \mathfrak{S}_{\omega}$ -invariance.

(日本)(四本)(日本)(日本)

Going further 00000000

▲□▶ ▲@▶ ▲ ≧▶ ▲ ≧▶ _ ≧

Local-Global Convergence

Definition (General Setting)

Let σ, σ^+ be countable signature with $\sigma \subseteq \sigma^+$, and let X be a fragment of FO(σ^+).

A sequence $(\mathbf{A}_n)_{n \in \mathbb{N}}$ is *X*-local global convergent if the sequence of the sets

$$\Omega_{\mathbf{A}_n} = \{\mathbf{A}_n^+ : \text{Shadow}(\mathbf{A}_n^+) = \mathbf{A}_n\}$$

converges with respect to Hausdorff distance (based on Lévy-Prokhorov metric on probability distributions).

FO-limits?

Going further 00000000

Local-Global Convergence Alternate Setting

Let $\sigma \subseteq \sigma^+$ and let $X \subseteq FO$.

A sequence is X-local global convergent if every X-convergent subsequence of lifts extends to a full X-convergent sequence of lifts.

Structural	Limits
00000000	0000000

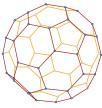
Properties

• (Using Blaschke theorem):

Every sequence $(\mathbf{A}_n)_{n \in \mathbb{N}}$ has an X-local global convergent subsequence.

• FO^{local}-local-global convergence with monadic lifts. This is standard local-global convergence.

 \rightarrow graphings are still limits of graphs with bounded degrees (Hatami, Lovász, and Szegedy '13) \rightarrow allows mark of expander parts.



(日) (四) (日) (日)

ъ

Open Problems

- 1. What is the exact threshold for general modeling FO-limits? (Between FO_1^* and FO_4^{local} ; Conjecture: FO_1^*)
- 2. What version of the Mass Transport Principle for modeling FO-limits of nowhere dense graphs can we require?
- 3. What hereditary class of graphs have modeling FO-limits? (Conjecture: Almost interpretations of nowhere dense classes)
- 4. Do local-global convergent sequences of nowhere dense graphs have modeling FO-limits?

(Almost! Conjecture: Yes; would extend Hatami-Lovász-Szegedy '13)

Going further

Thank you for your attention.

