Toward an imaginary Ax-Kochen-Ershov principle Work in progress with Martin Hils

Silvain Rideau

CNRS, IMJ-PRG, Université Paris Diderot

March 9 2018

A crash course on imaginaries

For all \mathcal{L} -theory *T*, we define:

$$\blacktriangleright \mathcal{L}^{eq} = \mathcal{L} \cup \bigcup_{X \subseteq Y \times Z \, \emptyset \text{-definable}} \{ E_X, f_X : Y \to E_X \}.$$

► $T^{\text{eq}} = T \cup \bigcup_X \{f_X \text{ induces an bijection } E_X \simeq Y/(X_{y_1} = X_{y_2})\}.$

- Every $M \models T$ has a unique \mathcal{L}^{eq} -enrichment $M^{eq} \models T^{eq}$.
- If D is a collection of stably embedded A-definable set, D^{eq} denotes the collection of A-induced imaginary sorts of D.
- ► Any *M*-definable set *X* has a smallest definably closed set of definition ¬*X*¬ in *M*^{eq}.

Definition

Let *T* be a theory and *D* a collection of \emptyset -interpretable sets.

- ▶ *T* eliminates imaginaries up to *D* if, for all $e \in M^{eq} \models T^{eq}$, there exists $d \in D(dcl(e))$ such that $e \in dcl(d)$.
- T weakly eliminates imaginaries up to D if, for all e ∈ M^{eq} ⊨ T^{eq}, there exists d ∈ D(acl(e)) such that e ∈ dcl(d).

Imaginaries in valued fields

In $Hen_{0,0}$, certain quotients cannot be eliminated:

$$\blacktriangleright \ \Gamma = K^{\times} / \mathcal{O}^{\times}.$$

►
$$k = \mathcal{O}/\mathfrak{m}$$
.

▶ $S_n = \operatorname{GL}_n(K)/\operatorname{GL}_n(\mathcal{O})$, the moduli space of lattices in K^n .

▶ For all $s \in S_n$, $V_s = Os/ms$, a dimension *n k*-vector space.

$$\triangleright \ T_n = \bigcup_{s \in S_n} V_s.$$

Theorem (Haskell-Hrushovski-Macpherson, 2006) ACVF eliminates imaginaries up to $\mathcal{G} = K \cup \bigcup_n (S_n \cup T_n)$.

► k^{eq} and Γ^{eq} .

Unreasonable Hope (Imaginary AKE, first attempt) Hen_{0,0} weakly eliminates imaginaries up to $\mathcal{G} \cup k^{eq} \cup \Gamma^{eq}$.

Some more imaginaries

Certain quotients cannot be eliminated in $\mathcal{G} \cup k^{eq} \cup \Gamma^{eq}$:

• K/K^n and, more generally, $(K/K^n)^{eq}$.

Solved by considering RV^{eq}, where RV = $K^{\times}/1 + \mathfrak{m} = T_1$.

- ► K/I for some $I \subseteq O$ definable ideal which is not a multiple of O or \mathfrak{m} , and higher dimensional equivalent.
 - Prevented by requiring the value group to be definably complete, e.g ordered groups elementarily equivalent to Z or Q.
- ▶ $R_b = \{b' \subseteq b \text{ maximal open subball}\}\$ and, more generally, R_b^{eq} , if $R_b(dcl(b)) = \emptyset$.

Solved by considering V_s^{eq} for some $s \in S_n(dcl(b))$.

For all $M \models \text{Hen}_{0,0}$ and $A = \text{acl}(A) \subseteq \mathcal{G}(M)$, let $\text{St}_A = \bigcup_{s \in S_n(A)} V_s$ and $D_A = A \cup \text{RV} \cup \text{St}_A$.

A New Hope (Imaginary AKE, second attempt)

Let $e \in M^{eq} \models \operatorname{Hen}_{0,0}^{eq}$ and $A = \mathcal{G}(\operatorname{acl}(e))$. Assume $\Gamma(M)$ is divisible or a \mathbb{Z} -group. Then e is weakly coded in D_A^{eq} .

A local look at imaginaries

Proposition

Let *D* be a collection of \emptyset -interpretable sets in *T*. Assume:

For every definable *X*, there exists a $D(\operatorname{acl}(\ulcorner X \urcorner))$ -invariant type p(x) such that $p(x) \vdash x \in X$.

Then *T* weakly eliminates imaginaries up to *D*.

Sometimes, it is easier to look for a definable *p*. One can then proceed in two steps:

- For every definable *X*, find a acl($\lceil X \rceil$)-definable type p(x) such that $p(x) \vdash x \in X$.
- For any $A = \operatorname{acl}(A) \subseteq M^{\operatorname{eq}}$ show that any *A*-definable type *p* is D(A)-definable.

Density of quantifier free definable types $Hen_{0,0}$

Let $T \supseteq \text{Hen}_{0,0}$ be a complete theory in an RV-enrichment of \mathcal{L}_{div} .

(Almost) Theorem

Assume k and Γ are stably embedded and algebraically bounded. Assume also that Γ is definably complete.

- ► For all $A \subseteq M^{eq} \models T^{eq}$ and quantifier free *A*-definable \mathcal{L}_{div} -type *p*, then *p* is $\mathcal{G}(dcl(A))$ -definable.
- ► Let *X* be definable in $M \models T$. There exists a quantifier free $acl(\ulcornerX\urcorner)$ -definable \mathcal{L}_{div} -type *p* consistent with *X*.
- The first statement is essentially proved by Johnson in his account of elimination of imaginaries in ACVF.
- The proof of the second statement is a mix of existing arguments.

Completing quantifier free types

Let $M \preccurlyeq \mathfrak{C} \models T$ and $a \in K$ be a tuple.

An alternative formulation of field quantifier elimination Assume $rv(M(a))) \subseteq dcl_0(M\rho(a))$, where $\rho(a) \in RV(dcl_0(Ma))$. Then

$$\operatorname{tp}_0(a/M) \cup \operatorname{tp}(\rho(a)/\operatorname{rv}(M)) \vdash \operatorname{tp}(a/M).$$

▶ If *a* is generic in some ball *b* over *M* and $c \in b(M)$, then

 $\operatorname{rv}(M(a)) \subseteq \operatorname{dcl}_0(\operatorname{rv}(M)\operatorname{rv}(a-c)).$

- Moreover, if *b* is open, *ρ*(*a*) = rv(*a* − *c*) does not depend on the choice of *c* ∈ *b*(*M*).
- So [ρ]_q, the germ of ρ over the *b*-definable type q = tp₀(a/M), is in dcl(b).
- It follows that tp(a/M) is bRV(M)-invariant.

Computing rv(M(a))

Proposition

Assume tp₀(*a*/*M*) is *N*-definable for some $N \preccurlyeq M$, then there exists $\rho(a) \in \operatorname{dcl}_0(Na)$ such that $\operatorname{rv}(M(ac)) \subseteq \operatorname{dcl}_0(\operatorname{rv}(M)\rho(a))$.

Let $c \in K$ be such that $p = tp_0(ac/M)$ is *A*-definable for some $A \subseteq M^{eq}$ and $q = tp_0(a/M)$. Assume one of the following holds:

- *c* is generic in an open ball or a strict intersection of balls over *M*(*a*);
- ► *c* is generic in a closed ball *b* over M(a) and there exists $g(a) \in R_b(\operatorname{dcl}_0(Ma))$ with $[q]_g \in \operatorname{dcl}(A)$;
- ▶ $c \in M(a)^{\text{alg}}$.

Then there exists $\rho(a) \in \text{RV}(\text{dcl}_0(Ma))$ with $[\rho]_p \in \text{dcl}(A)$ and

 $\operatorname{rv}(M(ac)) \subseteq \operatorname{dcl}_0(\operatorname{rv}(M(a))\rho(ac)).$

Finding invariant types

Corollary

Assume tp_0(a/M) is N-definable for some $N \preccurlyeq M$, then tp(a/M) is NRV(M)-invariant.

Assume *k* and Γ are stably embedded and algebraically bounded. Assume also that Γ is definably complete.

- ▶ Pick any $e \in M^{eq}$ and let $A = \mathcal{G}(\operatorname{acl}(e))$. Let f be \emptyset -definable and $a \in K^n$ such that e = f(a).
- ▶ We find a quantifier free *A*-definable \mathcal{L}_{div} -type *p* consistent with $f^{-1}(e)$. So we may assume $tp_0(a/M)$ is *A*-definable.
- So tp(a/M) and hence tp(e/M) is *N*RV(M)-invariant, for any $A \subseteq N \preccurlyeq M$.
- Since RV is stably embedded, $e \in dcl(NRV(M))$.
- ► It follows that there exists some G(acl(e))-definable set E which is internal to RV.

Imaginaries in $Hen_{0,0}$, take one

(Almost) Theorem

Assume *k* and Γ are stably embedded and algebraically bounded, Γ is definably complete and for all $A \subseteq M^{eq}$ and any *A*-definable ball *b*, either *b* isolates a complete type or $R_b(dcl(A)) \neq \emptyset$.

- ▶ for all $A \subseteq M^{eq}$, there exists $N \supseteq \mathcal{G}(A)$ such that $\operatorname{tp}(N/\mathcal{G}(A)) \vdash \operatorname{tp}(N/A)$;
- *T* weakly eliminates imaginaries up to $\mathcal{G} \cup \mathrm{RV}^{\mathrm{eq}}$.
- ► Let k be a characteristic zero bounded PAC field, then k((t)) and k((t^Q)) eliminate imaginaries up to G, provided certain constants are added to the residue field.
- The above result still holds if one adds angular components; i.e. a section of 1 → k[×] → RV → Γ → 0.
- ▶ With some tweaking, similar results should hold for k elementarily equivalent to a finite extension of Q_p.

Imaginaries in $Hen_{0,0}$, take two

Assume that for all $A \subseteq \mathcal{G}(M)$ and $\epsilon \in \text{St}_A(\text{dcl}_0(\mathfrak{C}))$, there is $\eta \in \text{St}_A(\mathfrak{C})$ with $\epsilon \in \text{dcl}_0(A\eta)$ and η is definable over $A\epsilon$ in $(\mathfrak{C}^{\text{alg}}, \mathfrak{C})$.

▶ If $tp_0(a/M)$ is stably dominated over *A* and *c* is generic, over M(a), in a closed ball $b \in dcl_0(Aa)$, then

 $\operatorname{rv}(M(ac)) \subseteq \operatorname{dcl}_0(\operatorname{rv}(M(a))\operatorname{St}_A(M)ac).$

► For all $A \subseteq \mathcal{G}(M)$, there exists $N \supseteq \mathcal{G}(A)$ such that tp(N/M) is $AD_A(M)$ -invariant.

Theorem

If $\operatorname{tp}_0(a/M)$ is A-definable then $\operatorname{tp}(a/M)$ is $AD_A(M)$ -invariant.

(Almost) Theorem

Assume that *k* is stably embedded and algebraically bounded and Γ is a pure ordered group which is either divisible or a \mathbb{Z} -group. Then any $e \in M^{\text{eq}}$ is weakly coded in D_A^{eq} , where $A = \mathcal{G}(\operatorname{acl}(e))$.

Valued fields with operators

Let $\delta = \{\delta_i : K \to K \mid i \in I\}, \mathcal{L}_{\delta} = \mathcal{L} \cup \delta$. Let $T_{\delta} \supseteq T \supseteq ACVF_{0,0}$ and $M \preccurlyeq \mathfrak{C} \models T_{\delta}$. Assume that for all tuples $a \in K$, $tp(\delta(a)/M) \vdash tp_{\delta}(a/M)$.

Corollary

If $\operatorname{tp}_0(\delta(a)/M)$ is *A*-definable, for some $A \subseteq \mathcal{G}(M)$, then $\operatorname{tp}_\delta(a/M)$ is $AD_A(M)$ -invariant.

Theorem (R.,R.-Simon)

Assume that *k*, Γ are stably embedded and k^{eq} , Γ^{eq} eliminate \exists^{∞} .

- ► For any $\mathcal{L}_{\delta}(M)$ -definable *X*, there exists $a \in X$ such that $\operatorname{tp}_0(a/M)$ is $\mathcal{L}_{\delta}(\operatorname{acl}_{\mathcal{L}_{\delta}}(\ulcorner X \urcorner))$ -definable.
- ► Assume, moreover that any externally \mathcal{L} -definable subset of $\Gamma^n(M)$ which is $\mathcal{L}_{\delta}(M)$ -definable is $\mathcal{L}(M)$ -definable. Then, for every $A = \operatorname{dcl}_{\delta}(A) \subseteq M^{\operatorname{eq}}$, any $\mathcal{L}_{\delta}(A)$ -definable quantifier free $\mathcal{L}_{\operatorname{div}}$ -type is $\mathcal{L}(\mathcal{G}(A))$ -definable.

The asymptotic theory of $(\mathbb{F}_p(t)^{\text{alg}}, \Phi_p)$

Let VFA₀ be the theory of equicharacteristic zero existentially closed σ -Henselian fields with an ω -increasing automorphism:

 $\blacktriangleright \ \sigma(\mathcal{O}) = \mathcal{O};$

• if $x \in \mathfrak{m}$, for all $n \in \mathbb{Z}_{>0}$, $v(\sigma(c)) > v(c)$.

We work in $\mathcal{L}_{\sigma}^{\text{RV}}$ with sorts *K* and RV, the ring language on both *K* and RV, and maps $\text{rv} : K \to \text{RV}$, $\sigma : K \to K$ and $\sigma_{\text{RV}} : \text{RV} \to \text{RV}$. By results of Hrushovski, Durhan and Pal:

- ► For all $(k, \sigma_k) \models ACFA_0$ and $(\Gamma, \sigma_{\Gamma}) \models \omega DOAG$, $(k((\Gamma)), \sigma) \models VFA_0$ where $\sigma(\sum_{\gamma} a_{\gamma} t^{\gamma}) = \sum_{\gamma} \sigma_k(a_{\gamma}) t^{\sigma(\gamma)}$.
- ► For every non-principal ultrafilter \mathfrak{U} on the set of primes, $\prod_{p\to\mathfrak{U}}(\mathbb{F}_p(t)^{\mathrm{alg}}, \Phi_p) \models \mathrm{VFA}_0.$
- ► VFA₀ eliminates field quantifiers.
- ▶ *k* is stably embedded and a pure model of ACFA₀.
- Γ is stably embedded and a pure model of ωDOAG. In particular, it is *o*-minimal.

Imaginaries in VFA₀

Let
$$\mathcal{L} = \mathcal{L}_{\sigma}^{\text{RV}} \setminus \{\sigma\}, T = \text{VFA}_{0}|_{\mathcal{L}} \text{ and } \delta = \{\sigma^{i} \mid i \in \mathbb{Z}_{\leq 0}\}.$$

▶ By field quantifier elimination, for all $M \models VFA_0$ and tuple $a \in K$, $tp(\delta(a/M)) \vdash tp_{\delta}(a/M)$.

Proposition

Let $T_0 \subseteq T_1$ two o-minimal theories (in $\mathcal{L}_0 \subseteq \mathcal{L}_1$) and $M_1 \models T_1$. Then, any externally \mathcal{L}_0 -definable subset of M_1^n which is $\mathcal{L}_1(M_1)$ -definable is $\mathcal{L}_0(M_1)$ -definable.

For every $M \models VFA_0$, any externally \mathcal{L} -definable subset of $\Gamma^n(M)$ which is $\mathcal{L}^{\text{RV}}_{\sigma}(M)$ -definable is $\mathcal{L}(M)$ -definable.

Theorem

Any $e \in M^{eq} \models VFA_0^{eq}$ is weakly coded in D_A^{eq} , where $A = \mathcal{G}(\operatorname{acl}(e))$.

Imaginaries in \mathcal{D}_A

Let $A = \operatorname{acl}(A) \subseteq M^{eq} \models \operatorname{VFA}^{eq}$. St_A = $\bigcup_{s \in S_n(\operatorname{acl}(A))} V_s$ with its $\operatorname{acl}(A)$ -induced structure is a collection of $k = V_{\mathcal{O}^{\times}}$ -vector spaces (with flags and roots) and for all $s \in \operatorname{acl}(A)$, an isomorphism $\sigma_a : V_s \to V_{\sigma(s)}$.

Proposition (adapted from Hrushovski, 2012) St₄ is supersimple and eliminates imaginaries.

(Almost) Theorem

- $\mathcal{D}_A = \mathrm{RV} \cup \mathrm{St}_A$ eliminates imaginaries.
- VFA₀ eliminates imaginaries up to \mathcal{G} .

Mixed characteristic

Most of what we did can be transported to mixed characteristic by consider the first equicharacteristic zero coarsening. Let $M \equiv W(\mathbb{F}_p^{alg})$ and $RV_n = K/1 + p^n \mathfrak{m}$.

(Almost) Theorem

- ► For any *M*-definable *X*, there exists $a \in K$ such that tp(a/M) is $\mathcal{G}(acl(\ulcornerX\urcorner)) \bigcup_n RV_n(M)$ -invariant.
- ▶ $W(\mathbb{F}_p^{\text{alg}})$ weakly eliminates imaginaries up to $\mathcal{G} \cup (\bigcup_n \text{RV}_n)^{\text{eq}}$.

Conjecture

- $W(\mathbb{F}_p^{\text{alg}})$ eliminates imaginaries up to \mathcal{G} .
- $(W(\mathbb{F}_p^{\mathrm{alg}}), W(\Phi_p))$ eliminates imaginaries up to \mathcal{G} .