On the axiomatisation of \mathbb{C}_p with roots of unity

Romain Rioux

March 7, 2018

Introduction

- Boris Zilber shows in the begin of the 90's that the structure (\mathbb{C},\mathbb{U}) is ω -stable.
- He uses a theorem proved by Henri Mann in the middle of the 60's claiming that for all fixed integers a_1, \ldots, a_n , the set $\{(z_1,\ldots,z_n)\in\mathbb{U}^n\;;\;\sum_{i=1}^n\,a_iz_i=1\}$ is "essentially" finite.
- In the middle of the 90's John Tate and José Felipe Voloch show the following result:

Theorem

For all
$$a_1,\ldots,a_n\in\mathbb{C}_p$$
, the set $\{v(\sum\limits_{i=1}^n a_iz_i)\;;\;z_1,\ldots,z_n\in\mathbb{U},\;\sum\limits_{i=1}^n a_iz_i\neq 0\}$ is bounded.

Introduction

We note \mathbb{U}_p the group of roots of unity of order a power of p and $\mathbb{U}_{\overline{p}}$ the group of roots of unity of order prime to p.

Fact

$$\mathbb{U}_p/v=\{1\},\ \mathbb{U}_{\overline{p}}/v=\mathbb{C}_p/v=\mathbb{F}_p^{alg}\ \text{and}\ \Gamma_{\mathbb{Q}(\mathbb{U}_{\overline{p}})}=\mathbb{Z}.$$

- $oldsymbol{1}$ The structure $(\mathbb{C}_p,\mathbb{U}_{\overline{p}},v)$
 - About Witt vectors
 - Axiomatisation of the structure $(\mathbb{C}_p, \mathbb{U}_{\overline{p}}, v)$
 - ullet Theorem of Tate-Voloch in $\mathbb{U}_{\overline{p}}$

- **2** The structure $(\mathbb{C}_p, \mathbb{U}, v)$
 - Decomposition in \mathbb{U}_p and consequences
 - Axiomatisation of the structure $(\mathbb{C}_p, \mathbb{U}, v)$

- **1** The structure $(\mathbb{C}_p, \mathbb{U}_{\overline{p}}, v)$
 - About Witt vectors
 - Axiomatisation of the structure $(\mathbb{C}_p, \mathbb{U}_{\overline{p}}, v)$
 - ullet Theorem of Tate-Voloch in $\mathbb{U}_{\overline{p}}$

- 2 The structure $(\mathbb{C}_p, \mathbb{U}, v)$
 - ullet Decomposition in \mathbb{U}_p and consequences
 - Axiomatisation of the structure $(\mathbb{C}_p, \mathbb{U}, v)$

Let k be a perfect field of caracteristic p.

Definition-Fact

There exists (up to valued field isomorphism) a unique valued field of caracteristic 0, complete, with value group $\mathbb Z$ and residue field k. We call it the Witt vectors field over k and note it W(k).

Definition-Fact

There exists a unique multiplicative group morphism, that we note τ , from k^{\times} to $W(k)^{\times}$ such that for any $x \in k^{\times}$ we have $\tau(x)/v = x$. We call it the Teichmüller map from k to W(k) and we call $\tau(k)$ the Teichmüller group of W(k).

Example

The Teichmüller group of $W(\mathbb{F}_p^{alg})$ is $\mathbb{U}_{\overline{p}}$.

Fact

For all $\overline{n} = (n_1, \dots, n_m) \in \mathbb{Z}^m$, there exists $N_{\overline{n}} \in \mathbb{N}$, such that for any perfect field k of caracteristic p and any x_1, \dots, x_m in k, we have :

$$W(k) \models \sum_{i=1}^{m} n_i \tau(x_i) \neq 0 \iff W(k) \models \bigvee_{j=0}^{N_{\overline{n}}} v\left(\sum_{i=1}^{m} n_i \tau(x_i)\right) = v(p^j).$$

Example

For all $\overline{n}=(n_1,\ldots,n_m)\in\mathbb{Z}^m$, the set $\{v(\sum_{i=1}^n n_i\zeta_i)\;;\;\zeta_1,\ldots,\zeta_n\in\mathbb{U}_{\overline{p}}\}$ is finite.

- **1** The structure $(\mathbb{C}_p, \mathbb{U}_{\overline{p}}, v)$
 - About Witt vectors
 - Axiomatisation of the structure $(\mathbb{C}_p, \mathbb{U}_{\overline{p}}, v)$
 - ullet Theorem of Tate-Voloch in $\mathbb{U}_{\overline{p}}$

- 2 The structure $(\mathbb{C}_p, \mathbb{U}, v)$
 - ullet Decomposition in \mathbb{U}_p and consequences
 - Axiomatisation of the structure $(\mathbb{C}_p, \mathbb{U}, v)$

- In 1999 Lou Van den Dries gives a axiomatisation of the structure $(W(\mathbb{F}_p^{alg}), \mathbb{U}_{\overline{p}}, v)$.
- Let \mathcal{L} be the language defined by $\mathcal{L} := \mathcal{L}_{\mathrm{div}} \cup \{G\}$, where G is a unary precitacte symbol.

Theorem

The \mathcal{L} -theory T consisting of :

- lacktriangledown the axioms of algebraically closed fields of caracteristic (0, p),
- $oldsymbol{2}$ the axiom expressing that G is a multiplicative lift of the residue field,
- \bullet for all $\overline{n}=(n_1,\ldots,n_m)\in\mathbb{Z}^m$, the axiom

$$\forall \overline{g} \in G, \sum_{i=1}^{m} n_i g_i \neq 0 \Longrightarrow \bigvee_{k=0}^{N_{\overline{n}}} v(\sum_{i=1}^{m} n_i g_i) = v(p^k),$$

is complete.

• $(\mathbb{C}_p, \mathbb{U}_{\overline{p}}, v)$, $(\mathbb{Q}_p^{alg}, \mathbb{U}_{\overline{p}}, v)$ and $(W(\mathbb{F}_p)^{alg}, \mathbb{U}_{\overline{p}}, v)$ are models of T.

• The schema of axioms 3. implies that for every model (M,G_M,v) of T, $\Gamma_{\mathbb{O}(G_M)}=\mathbb{Z}.$

Proposition

If (M,G_M,v) is a \aleph_1 -saturated model of T then $G_M\subseteq W(M/v)\subseteq M$ and $G_M= au(M/v)$.

- **1** The structure $(\mathbb{C}_p, \mathbb{U}_{\overline{p}}, v)$
 - About Witt vectors
 - Axiomatisation of the structure $(\mathbb{C}_p, \mathbb{U}_{\overline{p}}, v)$
 - ullet Theorem of Tate-Voloch in $\mathbb{U}_{\overline{p}}$

- **2** The structure $(\mathbb{C}_p, \mathbb{U}, v)$
 - ullet Decomposition in \mathbb{U}_p and consequences
 - Axiomatisation of the structure $(\mathbb{C}_p, \mathbb{U}, v)$

Theorem (Tate-Voloch 1996)

For all $a_1, \ldots, a_n \in \mathbb{C}_p$ the set $\{v(\sum_{i=1}^n a_i z_i) ; z_1, \ldots, z_n \in \mathbb{U}, \sum_{i=1}^n a_i z_i \neq 0\}$ is bounded.

Corollary

For all
$$a_1, \ldots, a_n \in \mathbb{Q}_p^{alg}$$
 the set $\{v(\sum_{i=1}^n a_i \zeta_i) \; ; \; \zeta_1, \ldots, \zeta_n \in \mathbb{U}_{\overline{p}}, \; \sum_{i=1}^n a_i \zeta_i \neq 0\}$ is finite.

Proposition

For all
$$a_1, \ldots, a_n \in \mathbb{C}_p$$
 the set $\{v(\sum_{i=1}^n a_i \zeta_i) \; ; \; \zeta_1, \ldots, \zeta_n \in \mathbb{U}_{\overline{p}}, \; \sum_{i=1}^n a_i \zeta_i \neq 0\}$ is finite.

- **1** The structure $(\mathbb{C}_p, \mathbb{U}_{\overline{p}}, v)$
 - About Witt vectors
 - Axiomatisation of the structure $(\mathbb{C}_p, \mathbb{U}_{\overline{p}}, v)$
 - ullet Theorem of Tate-Voloch in $\mathbb{U}_{\overline{p}}$

- 2 The structure $(\mathbb{C}_p, \mathbb{U}, v)$
 - ullet Decomposition in \mathbb{U}_p and consequences
 - Axiomatisation of the structure $(\mathbb{C}_p,\mathbb{U},v)$

Fact

For all
$$\xi \in \mathbb{U}_p \setminus \{1\}$$
 we have $v(\xi - 1) = \frac{p}{p-1} \operatorname{order}(\xi)^{-1}$.

- Sets of the kind $\{v(\sum_{i=1}^n a_i \xi_i) ; \xi_1, \dots, \xi_n \in \mathbb{U}_p, \sum_{i=1}^n a_i \xi_i \neq 0\}$ for $a_1, \dots, a_n \in \mathbb{C}_p$ are not finite in general.
- To compute the valuation of sums of the type $\sum_{i=1}^{n} a_i z_i$ (where $z_1, \ldots, z_n \in \mathbb{U}$) we rewrite them under the form

$$\sum_{0 \le i_1, \dots, i_n \le p-1} \alpha_{i_1, \dots, i_n} (\eta_1 - 1)^{i_1} \dots (\eta_n - 1)^{i_n}$$

where the $\alpha_{\overline{i}}$ are linear combinations with integers coefficients of the a_i and elements of $\mathbb{U}_{\overline{p}}$ and where $\eta_1, \ldots, \eta_n \in \mathbb{U}_p$ with $\operatorname{order}(\eta_1) < \cdots < \operatorname{order}(\eta_n)$.

Proposition

For all $a_1,\ldots,a_n\in\mathbb{C}_p$ there exists $m\in\mathbb{N}$ such that for every $\zeta_1,\ldots,\zeta_n\in\mathbb{U}_{\overline{p}}$ and for every $\xi_1,\ldots,\xi_n\in\mathbb{U}_p$ with $\max_{i\in[\![1,n]\!]}\left(\operatorname{order}(\xi_i)\right)\geq p^m$ we have

$$v\left(\sum_{i=0}^{n} a_{i}\zeta_{i}\xi_{i}\right) = \min_{\bar{i}\in[0,p-1]} \left(v\left(\sum_{0\leq i_{1},\dots,i_{n}\leq p-1} \alpha_{i_{1},\dots,i_{n}}(\eta_{1}-1)^{i_{1}}\dots(\eta_{n}-1)^{i_{n}}\right)\right).$$

Propositon

 \mathbb{U}_p et $\mathbb{U}_{\overline{p}}$ are definable in $(\mathbb{C}_p, \mathbb{U}, v)$ (and in $(\mathbb{Q}_p^{alg}, \mathbb{U}, v)$).

Theorem

For all $a_1, \ldots, a_n \in \mathbb{C}_p$ the set $\{v(\sum_{i=1}^n a_i z_i) \; ; \; z_1, \ldots, z_n \in \mathbb{U}, \; \sum_{i=1}^n a_i z_i \neq 0\}$ has a maximum.

- **1** The structure $(\mathbb{C}_p, \mathbb{U}_{\overline{p}}, v)$
 - About Witt vectors
 - Axiomatisation of the structure $(\mathbb{C}_p, \mathbb{U}_{\overline{p}}, v)$
 - ullet Theorem of Tate-Voloch in $\mathbb{U}_{\overline{p}}$

- **2** The structure $(\mathbb{C}_p, \mathbb{U}, v)$
 - ullet Decomposition in \mathbb{U}_p and consequences
 - Axiomatisation of the structure $(\mathbb{C}_p, \mathbb{U}, v)$

• Let \mathcal{L} the language defined by $\mathcal{L} := \mathcal{L}_{\operatorname{div}} \cup \{G_p, G_{\overline{p}}\}$, where G_p and $G_{\overline{p}}$ are unary predicates symbols.

Theorem

The \mathcal{L} -theory T consisting of :

- lacktriangle the axioms of valued fiels of caracteristic (0, p),
- $oldsymbol{2}$ the $\mathcal{L}_{\mathrm{div}} \cup \{G_{\overline{p}}\}$ -axioms of the theory $(\mathbb{C}_p, \mathbb{U}_{\overline{p}}, v)$,
- lacktriangledown the $\mathcal{L}_{
 m div} \cup \{G_p\}$ -axioms of \mathbb{U}_p as valued group,
- the axioms expressing that the valuation on a certain type of algerbaic sets has a maximum,

est complète.

• $(\mathbb{C}_p, \mathbb{U}, v)$ and $(\mathbb{Q}_p^{alg}, \mathbb{U}, v)$ are models of T.

The axioms of \mathbb{U}_p as valued group are :

- lacktriangledown the axioms expressing that G_p is a multiplicative divisible group,
- 2 the axiom

$$\forall x, y, (x \in G_p \land y^p = x) \Longrightarrow y \in G_p,$$

the axiom

$$\forall x \in G_p \setminus \{1\}, 0 < V(x) < v(p),$$

4 the axiom

$$\forall x, y \in G_p, (V(x) < V(y) \Longrightarrow V(x^p) \le V(y)) \land (x^p \ne 1 \Longrightarrow V(x^p) = pV(x)),$$

the axiom

$$\forall x, \left(0 < v(x) < v(p)\right) \Longrightarrow \left(\exists y \in G_p \setminus \{1\}, V(y) \le v(x) < pV(y)\right),$$

the axiom

$$\forall x, y \in G_p, (V(x) = V(y) \land x \neq 1) \Longrightarrow (\bigvee_{i=1}^{p-1} V(x) < V(xy^i)).$$

Notation

For all $P_1, \ldots, P_n \in \mathbb{Z}[X_1, \ldots, X_m, Y]$ and all $\overline{a} \in \mathbb{C}_p^m$ we note

$$A_{\mathbb{U}}(P_1(\overline{a}),\ldots,P_n(\overline{a})) := \{ y \in \mathbb{C}_p \; ; \; \exists \overline{z} \in \mathbb{U}^n, \; \sum_{i=1}^n P_i(\overline{a},y) z_i = 0 \}.$$

Proposition

Let $P_1,\ldots,P_n\in\mathbb{Z}[X_1,\ldots,X_m,Y]$. There exists $Q_1,\ldots,Q_r\in\mathbb{Z}[X_1,\ldots,X_m,Y,Z_1,\ldots,Z_n]$ such that for all $\overline{a}\in\mathbb{C}_p^m$ and all $x\in\mathbb{C}_p$, the set $\{v(x-y)\; ;\; y\in A_{\mathbb{U}}\big(P_1(\overline{a}),\ldots P_n(\overline{a})\big)\}$ has a maximum if for all $\overline{z}\in\mathbb{U}^n$ there exists $y_0\in A_{\mathbb{U}}\big(P_1(\overline{a}),\ldots P_n(\overline{a})\big)$ such that for all $y\in A_{\mathbb{U}}\big(P_1(\overline{a}),\ldots P_n(\overline{a})\big)$ with $v(x-y)>v(x-y_0)$ we have $v\big(Q_i(\overline{a},x,\overline{z})\big)=v\big(Q_i(\overline{a},y,\overline{z})\big)$ for all $i\in[\![1,r]\!]$.