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Topic of this talk: given two (real or complex) analytic functions f and g ,
understand whether f and g are locally interdefinable, and why.

Example: Theorem [Bianconi ’97].
Let Rexp = 〈R; 0, 1,+, ·, exp,<〉 and [a, b] ⊆ R. Then the function

f (x) =

{
sin x x ∈ [a, b]

0 x /∈ [a, b]

is not definable (with parameters) in Rexp, i.e.
no arc of sine can be obtained from the following geometric construction: start
with zerosets and positivity sets of exponential polynomials and close under
finite unions and intersections, taking complements and projections.

A converse: exp (as any continuous function and any open U ⊆ Rn) is
definable in Rsin = 〈R; 0, 1,+, ·, sin, <〉, since Z = {x : sin (2πx) = 0}.
So definability in Rsin does not correspond to geometric constructions.

A better converse: no restriction of exp to a compact interval is definable in
the “restricted” structure Rsin� = 〈R; 0, 1,+, ·, sin � [0, 1] , <〉 (which is a
reduct of Ran, hence o-minimal).

Summing up: exp and sin are not locally interdefinable.



Remark. If we identify C and R2, then exp and sin � [0, 1] define complex
exponentiation on the strip D = {z : Im (z) ∈ [0, 1]}.
Bianconi’s result: complex exponentiation is not definable, even locally, from
real exponentiation.

As for complex exp, for many holomorphic functions (for example, periodic
functions), if we separate the real and imaginary part, then the notion of (real)
definability that gives rise to geometric constructions is necessarily local (within
the realm of o-minimal geometry).

Some motivation.

• R helps C: the model theory of interesting holomorphic functions is less well
understood than that of (the restrictions of) their real and imaginary parts —
Peterzil & Starchenko: complex analysis in an o-minimal setting.

• Express local definability of holomorphic functions in terms of complex
operations (first separate real and imaginary part, then patch them back
together) — work started by Wilkie.

• C helps R: the geometry of sets definable via real analytic functions is better
understood if we can access definably their holomorphic extensions (Weierstrass
Preparation and quantifier elimination).
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Local definability
Definition (after A. Wilkie). Let K = R or C.
“Definable” means definable with parameters.

• Let U ⊆ Kn be open, g : U → K be (real/complex) analytic, ∆ ⊆ U be an
open relatively compact box with rational corners. We call g � ∆ a proper
restriction of g .

• Let F be a collection of (real/complex) analytic functions defined on open
subsets of Kn (for various n ∈ N) and F � be the collection of all proper
restrictions of all functions in F .
We let RF� = 〈R; 0, 1,+, ·, <,F �〉 be the expansion of the real field by the
graphs of the functions in F � (where we identify C with R2, if K = C).
(so RF� is a reduct of Ran)

• g : U → K is locally definable from F if all the proper restrictions of g are
definable in RF�.

• F and G are not locally interdefinable if no f ∈ F is locally definable from G
and no g ∈ G is locally definable from F .

Remark. Let f be a (real/complex) analytic function.

Then the Schwarz reflection f SR (z) := f (z) and the partial derivatives
∂f
∂zi

(z)

are locally definable from f .



Weierstrass elliptic functions
In the spirit of Bianconi, consider the exponential map of the complex
projective elliptic curve

E (C) =
{

[X : Y : Z ] ∈ P2 (C) : Y 2Z = 4X 3 − aXZ 2 − bZ 3}
(for suitable a, b ∈ C). More precisely,

• Lattice: Λ = {nω1 + mω2 : n,m ∈ Z, ω1, ω2 ∈ C lin. indep./R} ⊆ C

• Weierstrass ℘-function wrto Λ:

℘ (z) =
1
z2

+
∑

ω∈Λ\{0}

(
1

(z − ω)2
− 1
ω2

)
,

holomorphic on C \ Λ, periodic wrto Λ and differentially algebraic:(
℘′
)2

= 4 (℘)3 − a℘− b,

with a = 60
∑
ω∈Λ\{0} ω

−4, b = 140
∑
ω∈Λ\{0} ω

−6.

expE : C 3 z 7−→
[
℘ (z) : ℘′ (z) : 1

]
∈ E (C) ⊆ P2 (C)

is a homomorphism of complex Lie groups, with ker (expE ) = Λ.

Question. What of local interdefinability of complex exp and a ℘-function, or
of two different ℘-functions ℘1 and ℘2?



Orthogonality of Weierstrass ℘-functions
Theorem 1 [JKS14].

• No ℘-function is locally interdefinable with complex exp

• Two ℘-functions ℘1 and ℘2 are locally interdefinable iff ℘2 is isogenous to
either ℘1 or ℘SR

1 (i.e. ∃α ∈ C× s.t. Λ1 ⊆ αΛ2 or Λ1 ⊆ αΛ2)

• More generally, let F1,F2 be two disjoint sets of ℘-functions. Then ℘ ∈ F2 is
locally definable from F1 ∪ {exp} iff ∃℘̃ ∈ F1 s.t. ℘ is isogenous to either ℘̃ or
℘̃SR (we say that ℘ and ℘̃ are ISR-equivalent)

• Furthermore, suppose that the ℘-functions in F1 ∪ F2 are pairwise
non-ISR-equivalent and that X ⊆ Rn. Let R1 = R(F1∪{exp})� and R2 = RF2�.
Then X is definable in both R1 and R2 iff X is semialgebraic.

Keypoint (Ax’s theorem): Let ϕ = {ϕj}mj=1 be a Q-linearly independent set of
power series without constant term. Then

tr.degC ({ϕj (z) , exp (ϕj (z)) : j = 1, . . . ,m}) ≥ m + 1

[Brownawell & Kubota, 1977]. An Ax-type functional transcendence statement
for exp and finitely many pairwise non-isogenous ℘-functions, applied to linearly
independent sets of power series without constant term.

Theorem 1 says: not only are these functions algebraically independent, but
they are also pairwise orthogonal wrto local definability.



An application: proving that certain functions are transcendental

Remark. let F be the set of all ℘-functions and let f : (a, b) −→ R be a
transcendental real analytic function locally definable in RF . Then the function
g (x) = exp (f (log x)) is transcendental: otherwise f = log ◦g ◦ exp is definable
also in Rexp, and hence f is algebraic, by Theorem 1.

A counting application. Let f be as above and, for q = a
b ∈ Q, let

H (q) = max (|a| , |b|). Then there exist constants c, γ > 0 (depending only on
f ) such that

# {(log p, log q) ∈ Γ (f ) : p, q ∈ Q, H (p) ,H (q) ≤ T} ≤ c (logT )γ .

Proof.

• Enough to count the pairs (p, q) ∈ Q2 ∩ Γ (g).

• Show that g is definable in a model-complete reduct R of RPfaff.

• Apply a counting theorem for transcendental curves definable in R, due to
Jones & Thomas.



Proof of Theorem 1: ingredients
Remark 1.
• ℘2 = ℘SR

1 =⇒ ℘2 locally definable from ℘1 (actually, Λ2 = Λ1)
• α ∈ C× and Λ1 = αΛ2 =⇒ ℘2 (z) = α2℘1 (αz)
• Λ1 ⊆ Λ2 =⇒ ℘2 is an elliptic function periodic wrto Λ1 =⇒ ℘2 is a
rational combination of ℘1 and ℘′1 (known fact)

Hence, if ℘2 is ISR-equivalent to ℘1 (i.e. ∃α ∈ C× s.t. Λ1 ⊆ αΛ2 or
Λ1 ⊆ αΛ2), then ℘2 is locally definable from ℘1.

Remark 2. Let F be a collection of holomorphic functions and g /∈ F be a
holomorphic function. If g is obtained from functions in F by composition or
by extracting implicit functions, then clearly g is locally definable from F .
Ingredient 1 [Wilkie ’08]. Let z0 be suitably generic. Then g is locally
definable from F in a neighbourhood of z0 iff g is obtained from functions in F
and polynomials by finitely many applications of Schwarz reflection,
differentiation, composition and extracting implicit functions.

Ingredient 2 [Brownawell & Kubota ’77]. For i = 1, . . . , n, let:
fi = exp or fi = ℘i , (with ℘i , ℘j non-isogenous),
Ki = CM-field of fi (Q or a quadratic extension of Q),
ϕi = {ϕi,j}mi

j=1 a Ki -lin. indep. set of power series ∈ zC JzK. Then

tr.degC ({ϕi,j (z) , fi (ϕi,j (z)) : i = 1, . . . , n, j = 1, . . . ,mi}) ≥
n∑

i=1

mi + 1



Proof of Theorem 1: an easy case
Let ℘1, ℘2 be non-isogenous ℘-functions such that Λ1 = Λ1 and Λ2 = Λ2.
Suppose for a contradiction that ℘2 is locally definable from ℘1.

Wilkie’s theorem (i.e. ℘2 is obtained from ℘1 by differentiation, composition,
implicit function) + properties of ℘-functions (e.g. differential algebraicity, the
group structure on the elliptic curve), imply that

℘2 is generically implicitly definable from ℘1:

around a suitably chosen z0, for some m ∈ N, there is an (m + 1)-tuple

g = (g1 (z) , . . . , gm+1 (z))

of holomorphic functions, with g1 (z) = z and g2 (z) = ℘2 (z), such that the
(2m + 2)-tuple

{gi (z) , ℘1 (gi (z))}m+1
i=1

satisfies a nonsingular system of m polynomial equations. In particular,

tr.degC
(
{gi (z) , ℘1 (gi (z))}m+1

i=1

)
≤ (2m + 2)−m = m + 2.

By Ax’s theorem [BK77], applied to ℘1, ℘2, with ϕ1 = g (z) , ϕ2 = {z},

tr.degC
(
{gi (z) , ℘1 (gi (z))}m+1

i=1

)
≥ |ϕ1|+ |ϕ2|+1 = (m + 1)+1+1 = m+3  



Proof of Theorem 1: the general case
Definition. Given a set F of holomorphic functions, local definability from F
induces a closure operator hclF on subsets of C: for A ⊆ C, b ∈ C

b ∈ hclF (A)⇐⇒ ∃ g :U⊆Cn−→C loc. ∅-def. from F , ∃ a ∈ U s.t. b = g (a) .

Wilkie’s thm revisited:
• hclF is a pregeometry (dimF the associated dimension)
• hclF can be expressed in terms of suitable derivations on C (makes
computations easier + can apply the differential version of Ax’s theorem)

Remarks. F set of holomorphic functions, g :U⊆Cn−→C holomorphic.
• g loc. def. from F , with parameters in C0 =⇒ ∀a ∈U, g (a)∈ hclF (a ∪ C0)
(so dimF (a, g (a) /C0) = 0).
• if F = ∅, then ∀a ∈U dim∅ (a, g (a) /C0) = 0 =⇒ g is algebraic

Step 1.
F1,F2 finite sets of ℘-functions such that F0 = F1 ∩ F2 = ∅ and the functions
in F3 = {exp} ∪ F1 ∪ F2 are pairwise non-ISR-equivalent,
g :U⊆Cn−→C holomorphic, locally definable from both F1 ∪ {exp} and F2.
To prove: g is agebraic.

Let dimi := dimFi . By the above, enough to prove

∀a ∈ U, dimi (a, g (a) /C0) = 0 for i = 1, 2, 3 =⇒ ∀a ∈ U, dim0 (a, g (a) /C0) = 0.



Step 1. F0 = F1 ∩ F2 = ∅, F3 = {exp} ∪ F1 ∪ F2, dimi = dimFi ,
g :U⊆Cn−→C such that, for all a ∈ U, dimi (a, g (a) /C0) = 0 for i = 1, 2, 3.
To prove: for all a ∈ U, dim0 (a, g (a) /C0) = 0.

A predimension function (after Hrushovski, à la Zilber, Kirby).
C0 ⊆ C countable subfield, hcli (C0)=C0; b ∈Cm; Kf = CM-field of f ∈ F3.

δi
(
b/C0

)
= tr.degQ

(
b, {f (bj )}j=1,...,m

f∈Fi
/C0

)
−
∑
f∈Fi

lin.dimKf

(
b/C0

)
.

(Example: Schanuel’s conjecture says that ∀b, δexp
(
b/Q

)
≥ 0.)

We prove Step 1 by showing (using Wilkie’s thm + Ax’s thm): ∀i = 0, 1, 2, 3
• (Ax-type statement) δi (·/C0) ≥ 0
• may suppose that ∀a ∈ U, dimi (a, g (a) /C0) = δi (a, g (a) /C0)
• (modularity) δ3 (·/C0) = δ1 (·/C0) + δ2 (·/C0)− δ0 (·/C0)

Step 2. X ⊆ Rn definable in R(F1∪{exp})� and in RF2�.
To prove: X is semialgebraic.

Proof (o-minimal manipulations).
• X is definable in both structures by the same real analytic functions
• Every definable real analytic function is almost everywhere the restriction to
Rn of a locally definable holomorphic function (hence apply Step 1)



Characterising local definability

Back to Wilkie’s characterisation of local definability around generic points:

Theorem [Wilkie ’08]. Let F be a collection of holomorphic functions and
g /∈ F be a holomorphic function. Let z0 be suitably generic.
Then g is locally definable from F in a neighbourhood of z0 iff g is obtained
from functions in F and polynomials by finitely many applications of the
following natural complex operations: Schwarz reflection, differentiation,
composition and extracting implicit functions.
The real version of this theorem (without Schwarz reflection) is a consequence
of the proof of the model completeness of Ran [Gabrielov].

It is natural to ask whether the result still holds if we remove the genericity
hypothesis. Genericity gives transversality, whereas in the non-generic case
some resolution of singularities might be needed. Strange phenomena may
occur during resolution...

Theorem 2 [JKLS18].
The answer is no: the above operations are not enough ot describe all locally
definable analytic functions in a neighbourhood of a non-generic point.
At least three other operations are needed.
These new operations (monomial division, deramification, blow-downs) come
indeed from resolution of singularities.



Examples in Theorem 2

Let F = {exp} and g (z) =

{
(ez − 1) /z if z 6= 0
1 if z = 0

.

Then, g is clearly locally definable from exp.

If Wilkie’s theorem applies in a neighbourhood of zero (non-generic!), then, as
in the proof of Theorem 1 (the easy case), we show that g is a coordinate of an
N-tuple g , solution of a nonsingular system of N − 1 exponential polynomial
equations.

This, and the fact that g and exp are algebraically dependent, implies that

tr.degC
(
g , eg

)
≤ N.

Now, Ax’s theorem implies instead that tr.degC
(
g , eg) ≥ N + 1, a

contradiction.

Hence, a new operation is needed: monomial division.



Examples in Theorem 2

For the other two operations (deramification and blow-downs), the definitions
and the examples are more involved (in particular, we do not have an example
with exp).

For this we need Le Gal’s notion of strongly transcendental function (see also
Zilber’s generic functions with derivatives): functions satisfying very few
relations (in particular, not differentially algebraic).

Idea: we find a strongly transcendental holomorphic g such that g is locally
definable in a neighbourhood of zero from the ramification f (z) = g

(
z2
)
but

not obtainable from f by the previous operations.
Hence, a new operation is needed: composition with nth-roots (deramification).

Next, we find a strongly transcendental holomorphic h (z1, z2) which is locally
definable in a neighbourhood of zero from the blow-up
F = {h (z1, z1 (λ+ z2)) : λ ∈ C} ∪ {h (z1z2, z2)} but not obtainable from F
by the previous operations.
Hence a new operation is needed: blow-down.

Remark. These new operations are needed only at non-generic points, so we do
not contradict Wilkie’s theorem!



Characterising local definability

In the complex case, we do not know if these new operations suffice to describe
all locally definable functions in a neighbourhood of any point.

In the real case, we know more:

Theorem 3 [LSV18]. If F is a collection of real analytic functions, then all real
analytic functions locally definable from F can be obtained, in a
neighbourhood of any point, from F and the polynomials by finitely may
applications of derivation, composition, extracting implicit functions, monomial
division, deramifications and blow-downs.

A similar statement holds for C∞ germs definable from a quasianalytic class à
la Rolin-Speissegger-Wilkie.


