Valued Fields, Model-Theoretic Aspects

Lou van den Dries

University of Illinois at Urbana-Champaign

Luminy, January 2018

- Introduction (including some history)
- Hensel's Lemma and henselian local rings
- Some valuation theory
- Algebraically closed valued fields

Abraham Robinson proved in the 1950s the model completeness of algebraically closed valued fields, a result that has turned out to be seminal but didn't attract much attention at the time. (To me it was an eye-opener when I read the proof as a graduate student.)

1960s: Ax & Kochen and, independently, Ersov, proved a remarkable theorem on the model theory of henselian valued fields, with applications to *p*-adic number theory.

AKE (= Ax, Kochen, Ersov) was the starting point for a lot of work by many others, both on the applied side (Macintyre, Denef, Loeser, Hrushovski,...) and material with a more model-theoretic orientation (Haskell-Hrushovski-Macpherson,...).

Notations: $m, n \in \mathbb{N} = \{0, 1, 2, ...\}$, R and R' are rings (always commutative with 1), k, k', K, and K' are fields.

Given R we have the power series ring R[[t]] whose elements are the formal power series

$$a_0 + a_1t + a_2t^2 + a_3t^3 + \cdots$$
 (all $a_n \in R$)

Exercise: this series is a **unit** of R[[t]] iff a_0 is a unit of R.

Thus, give a field \mathbf{k} , the series $a_0 + a_1t + a_2t^2 + \cdots$ in $\mathbf{k}[[t]]$ with constant term $a_0 \neq 0$ are the units of $\mathbf{k}[[t]]$. Actually, $\mathbf{k}[[t]]$ is an integral domain with fraction field $\mathbf{k}((t))$, whose elements are the (formal) Laurent series over \mathbf{k} : the series

$$\sum_{i=i_0}^{\infty}a_it^i$$
 (all $a_i\inoldsymbol{k},\ i_0\in\mathbb{Z}$)

so we allow finitely many powers t^i with i < 0.

We can now state some special cases of AKE for \boldsymbol{k} of characteristic 0:

$$\mathbf{k} \equiv \mathbf{k}' \implies \mathbf{k}[[t]] \equiv \mathbf{k}'[[t]]$$

(Open problem: can we drop here the characteristic 0 assumption.)

Relevant elementary properties of rings like k[[t]]: they are henselian local rings, and they are valuation rings. (Polynomial rings k[t] are not local rings; power series rings like $k[[t_1, t_2]]$ are henselian local rings, but not valuation rings, and the above implication fails for k[t] or $k[[t_1, t_2]]$ in place of k[[t]].)

Other special case of AKE: $\mathbb{C}\{t\} \preccurlyeq \mathbb{C}[[t]]$

A ring R is said to be **local** if it has exactly one maximal ideal \mathfrak{m} . In that case the field $\mathbf{k} = R/\mathfrak{m}$ is called the **residue field of** R. Think of the residue map $f \mapsto f + \mathfrak{m} : R \to \mathbf{k}$ as evaluating the "function" $f \in R$ at a point. Being local is a first-order property of rings: it is equivalent to a + b being a non-unit for all non-units a, b (Exercise.)

Examples: $\mathbf{k}[[t]]$, with $\mathfrak{m} = (t)$ and $\mathbf{k}[[t]]/\mathfrak{m} \cong \mathbf{k}$

 \mathcal{O}_a := ring of germs of holomorphic functions at a point $a \in \mathbb{C}$. This is a local domain with $\mathfrak{m} = \{f \in \mathcal{O}_a : f(a) = 0\}$ and Taylor expansion at a yields an embedding of \mathcal{O}_a into $\mathbb{C}[[t]]$ with image $\mathbb{C}\{t\}$

for a prime number p and $n \ge 1$ the ring $R := \mathbb{Z}/p^n\mathbb{Z}$ $(n \ge 1)$ is local with \mathfrak{m} generated by the image of p in R and $R/\mathfrak{m} \cong \mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$

The rings $\mathbb{Z}/p^n\mathbb{Z}$ form a projective system:

$$\cdots \rightarrow \mathbb{Z}/p^{n+1}\mathbb{Z} \rightarrow \mathbb{Z}/p^n\mathbb{Z} \rightarrow \cdots \rightarrow \mathbb{Z}/p^2\mathbb{Z} \rightarrow \mathbb{Z}/p\mathbb{Z}.$$

$$\mathbb{Z}_p := \lim_{\leftarrow} \mathbb{Z}/p^n \mathbb{Z},$$

is called **the ring of** *p*-adic integers and has the advantage over the $\mathbb{Z}/p^n\mathbb{Z}$ of being a local *domain* extending \mathbb{Z} . Its elements can be represented uniquely in the form

$$a_0 + a_1 p + a_2 p^2 + a_3 p^3 + \cdots$$
 (all $a_i \in \{0, 1, 2, \dots, p-1\}$)

For example, $(1 + p + p^2 + p^3 + \cdots)(1 - p) = 1$.

Exercise: what are the *p*-adic digits of -1?

Let R be a local ring. Then we have a descending sequence

$$R = \mathfrak{m}^0 \supseteq \mathfrak{m}^1 \supseteq \mathfrak{m}^2 \supseteq \mathfrak{m}^3 \supseteq \cdots$$

We have $\bigcap_n \mathfrak{m}^n = \{0\}$ in all the examples above. Assume this holds. Then we can define a **norm** on *R* by

$$|a|:=2^{-n}$$
 if $a\in\mathfrak{m}^n\setminus\mathfrak{m}^{n+1},$ $|0|:=0.$

Thus:

$$\begin{aligned} |a| \leqslant 1, \quad |a+b| \leqslant \max(|a|,|b|), \quad |ab| \leqslant |a| \cdot |b|, \\ |a| = 1 \iff a \in R \setminus \mathfrak{m} \iff a \text{ is a unit}, \qquad |a| < 1 \iff a \in \mathfrak{m}. \end{aligned}$$

|a-b| is a metric on R, and the local ring R is **complete** if it is complete with respect to this metric. The examples above are complete, except for \mathcal{O}_a and $\mathbb{C}\{t\}$.

Completeness is not "first-order", but it implies a powerful scheme of first-order properties:

Hensel's Lemma. Let R be a complete local ring, $f(X) \in R[X]$, and $a \in R$, such that $f(a) \in \mathfrak{m}$ and $f'(a) \notin \mathfrak{m}$. Then there is a unique $b \in R$ such that f(b) = 0 and $a - b \in \mathfrak{m}$.

The assumption on f(X) and a can also be expressed as: |f(a)| < 1 and |f'(a)| = 1. This might suggest its proof by *Newton approximation*; see picture. Formally:

$$f(a+x) = f(a) + f'(a)x + \text{higher powers of } x.$$

Take x such that f(a) + f'(a)x = 0, that is, x = -f(a)/f'(a). Then |x| = |f(a)| < 1, and hence $|f(a+x)| \leq |f(a)|^2 < |f(a)|$. In this way we construct a sequence (a_n) with $a_0 = a$, $a_1 = a + x$, a_2 obtained from a_1 as a_1 was obtained from $a_0 = a$, and so on. Then (a_n) is a Cauchy sequence, so $a_n \to b$ in R as $n \to \infty$, and then f(b) = 0, |a - b| < 1. A local ring R is said to be **henselian** if it has the property of Hensel's Lemma: for any $f(X) \in R[X]$ and any $a \in R$ with $f(a) \in \mathfrak{m}$ and $f'(a) \notin \mathfrak{m}$ there exists $b \in R$ such that f(b) = 0 and $a - b \in \mathfrak{m}$.

Exercise: show that such *b* is necessarily unique.

All the examples of local rings we mentioned are henselian, including the non-complete $\mathbb{C}\{t\}$. Example of a local ring that is not henselian:

 $\boldsymbol{k}[t]_{(t)} := \{f(t)/g(t): f(t), g(t) \in \boldsymbol{k}[t], g(0) \neq 0\} \subseteq \boldsymbol{k}[[t]]$

Theorem

Let R be a henselian local ring, $R \supseteq \mathbb{Q}$. Then R has a subfield that is mapped (isomorphically) onto the residue field **k** by the residue map $a \mapsto \operatorname{res}(a) : R \to \mathbf{k}$.

Proof.

Let *E* be a subfield of *R*. Note that then the residue map res : $R \to \mathbf{k}$ is injective on *E*. Suppose res $(E) \neq \mathbf{k}$, and take $a \in R$ such that res $(a) \notin res(E)$.

Case 1: res(a) is transcendental over res(E). Then a generates a subfield E(a) of R that properly extends E. (Exercise)

Case 2: res(a) is algebraic over res(E). Take monic $f(X) \in R[X]$ such that its image in k[X] is the minimum polynomial of res(a) over res(E). Then $f(a) \in \mathfrak{m}$ (clear) and $f'(a) \notin \mathfrak{m}$ (why?). Using that R is henselian, we get $b \in R$ such that f(b) = 0 and res(a) = res(b). Then E[b] is a subfield of R that properly extends E.

An application

Theorem (Greenleaf, Ax & Kochen)

Let $f_1(X), \ldots, f_m(X) \in \mathbb{Z}[X]$, $X = (X_1, \ldots, X_n)$. Then for all sufficiently large primes p, every solution of $f_1(X) = \cdots = f_m(X) = 0$ in \mathbb{F}_p can be lifted to a solution in \mathbb{Z}_p .

Proof.

The polynomials f_1, \ldots, f_m are given by terms in the language *L* of rings. Construct an *L*-sentence σ such that for every local ring *R* we have:

 σ is true in $R \iff$ for all $x \in R^n$ with $f_1(x), \ldots, f_m(x) \in \mathfrak{m}$ there exists $y \in R^n$ such that

$$f_1(y) = \cdots = f_m(y) = 0$$
 and $x_1 - y_1, \ldots, x_n - y_n \in \mathfrak{m}$.

Lifting theorem: σ holds in all henselian local rings R with char $\mathbf{k} = 0$. Hence σ holds in all henselian local rings R with char $\mathbf{k} > N$, for a certain $N = N(f_1, \ldots, f_m) \in \mathbb{N}$. So if p > N, every solution of $f_1 = \cdots = f_m = 0$ in \mathbb{F}_p can be lifted to a solution in \mathbb{Z}_p .

Valued Fields

A **valuation** on K is a map $v : K^{\times} \to \Gamma$ onto an ordered abelian group Γ such that for all $a, b \in K^{\times}$

•
$$v(a+b) \ge \min(va, vb)$$
 provided $a+b \ne 0$;

•
$$v(ab) = va + vb$$
.

We always extend v to all of K by setting $v0 = \infty > \Gamma$, so that the rules above are valid without exception. A **valued field** is a field together with a valuation on it.

Example: $\mathcal{K} = \mathbf{k}((t^{\Gamma}))$, consisting of the formal series $f(t) = \sum_{\gamma} c_{\gamma} t^{\gamma}$ given by a function $\gamma \rightarrow c_{\gamma} : \Gamma \rightarrow \mathbf{k}$ with *well-ordered* support $\{\gamma : c_{\gamma} \neq 0\}$. Here the valuation $v : \mathcal{K}^{\times} \rightarrow \Gamma$ is given by $v(f) = \min \operatorname{supp} f$. For $\Gamma = \mathbb{Z}$ this is the usual field $\mathbf{k}((t))$ of Laurent series over \mathbf{k} .

Other Example: $\mathbb{Q}_p := \operatorname{Frac}(\mathbb{Z}_p)$, the field of *p*-adic numbers. Every nonzero element of \mathbb{Z}_p is uniquely of the form $p^n \cdot (\operatorname{unit} \operatorname{of} \mathbb{Z}_p)$, so every nonzero element of \mathbb{Q}_p is uniquely of the form $p^k \cdot (\operatorname{unit} \operatorname{of} \mathbb{Z}_p)$ with $k \in \mathbb{Z}$, and we set $v_p(a) = k$ for $a = p^k \cdot (\operatorname{unit} \operatorname{of} \mathbb{Z}_p)$. This is the *p*-adic valuation $v_p : \mathbb{Q}_p^{\times} \to \mathbb{Z}$.

Valued fields, continued

Both for k((t)) and \mathbb{Q}_p the valuation relates to the norm that we imposed on k[[t]] and \mathbb{Z}_p (with these norms extended to their fraction fields by |a/b| := |a|/|b|):

$$|x| \leqslant |y| \iff vx \geqslant vy$$

Let $v : K^{\times} \to \Gamma$ be a valuation. Then $\mathcal{O}_{v} := \{a : va \ge 0\}$ is a subring of K with $\mathcal{O}_{v}^{\times} = \{a : va = 0\}$ and whose nonunits are the a with va > 0. Thus \mathcal{O}_{v} is a local ring with maximal ideal $\mathfrak{m}_{v} = \{a : va > 0\}$. We can reconstruct v basically from \mathcal{O}_{v} , since v induces an isomorphism $K^{\times}/\mathcal{O}_{v}^{\times} \cong \Gamma$ of ordered groups, with the ordering on $K^{\times}/\mathcal{O}_{v}^{\times}$ given by

$$a\mathcal{O}_v^{\times} \geqslant b\mathcal{O}_v^{\times} \iff a/b \in \mathcal{O}_v$$

We call \mathcal{O}_v the valuation ring of v. In general, a valuation ring of a field K is a subring \mathcal{O} of K such that for all $a \in K^{\times}$, either $a \in \mathcal{O}$ or $a^{-1} \in \mathcal{O}$. In that case, $\mathcal{O} = \mathcal{O}_v$ for some valuation v on K, which by the above is unique up to an ordered group isomorphism.

Alternative definition of a valued field: a field together with a valuation ring of the field.

Examples: the valuation ring of the Laurent series field $\mathbf{k}((t))$ is $\mathbf{k}[[t]]$. More generally, the valuation ring of $\mathbf{k}((t^{\Gamma}))$ consists of the series $\sum_{\gamma \ge 0} c_{\gamma} t^{\gamma}$. The valuation ring of \mathbb{Q}_p is \mathbb{Z}_p .

Ideology of valuation theory: given a valuation $v : K^{\times} \to \Gamma$, try to understand K in terms of two structures that are in general simpler: the residue field $\mathbf{k}_v = \mathcal{O}/\mathfrak{m}_v$, and the value group Γ .

AKE: this ideology works perfectly if \mathcal{O}_{v} is henselian and char $(\boldsymbol{k}_{v}) = 0$.

Let K be a valued field with residue field \mathbf{k} . Then (char K, char \mathbf{k}) can take the values

(0,0), for
$$K = \mathbf{k}((t^{\Gamma}))$$
 with char $\mathbf{k} = 0$,
(0,p), for $K = \mathbb{Q}_p$,
(p,p), for $K = \mathbf{k}((t^{\Gamma}))$ with char $\mathbf{k} = p$.

Let K be a valued field with valuation ring \mathcal{O} , residue field k and value group Γ .

Exercises. Show the following:

- if E is a subfield of K, then $\mathcal{O} \cap E$ is a valuation ring of E;
- ② *O* is integrally closed in *K*, that is, if *x* ∈ *K* and $x^n + a_1x^{n-1} + \cdots + a_n = 0$ with $a_1, \ldots, a_n \in O$, then *x* ∈ *O*;
- if K is algebraically closed, then k is algebraically closed, Γ is divisible, that is, $n\Gamma = \Gamma$ for all $n \ge 1$, and \mathcal{O} is henselian. (Converse holds if char k = 0.)

Open and closed balls. Let K be a valued field and $v : K^{\times} \to \Gamma$ its valuation.

 $B_a(\gamma) := \{x : v(x - a) > \gamma\}$ is the open ball centered at a with valuation radius γ ;

 $\bar{B}_a(\gamma) := \{x : v(x - a) \ge \gamma\}$ is the *closed* ball centered at *a* with valuation radius γ .

The open balls form a basis for the **valuation topology** of K, making K a topological field. NB: all balls are open and closed, and $\bar{B}_a(\gamma)$ is *not* the closure of $B_a(\gamma)$.

Key fact: for any two balls B_1 and B_2 , if $B_1 \cap B_2 \neq \emptyset$, then $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$.

Note that O is the closed ball centered at 0 with valuation radius 0, and that its maximal ideal is the open ball centered at 0 with valuation radius 0.

Exercises. Show the following (with the valuation topology on \mathbb{Q}_p):

- **2** the valuation rings of \mathbb{Q} different from \mathbb{Q} are exactly the above $\mathbb{Z}_p \cap \mathbb{Q}$;
- **③** \mathbb{Z} is dense in \mathbb{Z}_p and \mathbb{Q} is dense in \mathbb{Q}_p ;
- \mathbb{Z}_p is a compact subset of \mathbb{Q}_p , and thus \mathbb{Q}_p is locally compact;
- if the valued field K is a locally compact, then \mathcal{O} is compact, k is finite, and the value group is isomorphic to \mathbb{Z} .

•
$$\mathbb{Z}_p = \{ a \in \mathbb{Q}_p : 1 + pa^2 = b^2 \text{ for some } b \in \mathbb{Q}_p \}$$
 (p odd);

• the only ring endomorphism of \mathbb{Q}_p is the identity.

Let K and K' be valued fields with valuation rings \mathcal{O} and \mathcal{O}' . Call K a valued subfield of K' (notation: $K \subseteq K'$), if K is a subfield of K' and $\mathcal{O} = \mathcal{O}' \cap K$; in that case we also call K' a valued field extension of K.

Assume $K \subseteq K'$. Then we have an induced field embedding $\mathbf{k} \to \mathbf{k}'$ of the residue fields, as well as an induced ordered group embedding $\Gamma \to \Gamma'$ of the value groups, where $\Gamma = K^{\times}/\mathcal{O}^{\times}$ and $\Gamma' = K'^{\times}/\mathcal{O}'^{\times}$. Identify \mathbf{k} with a subfield of \mathbf{k}' via this embedding! Likewise, identify Γ with a subgroup of Γ' .

A valued field extension $K \subseteq K'$ is said to be **immediate** if $\mathbf{k} = \mathbf{k}'$ and $\Gamma = \Gamma'$.

Examples of immediate and non-immediate extensions:

- the extension $\boldsymbol{k}(t) \subseteq \boldsymbol{k}((t))$ is immediate;
- the extension $\mathbb{C}\{t\}[t^{-1}] \subseteq \mathbb{C}((t))$ is immediate;
- $\mathbb{R}((t)) \subseteq \mathbb{C}((t))$ is not immediate;
- $\boldsymbol{k}((t)) \subseteq \boldsymbol{k}((t^{1/2})) := \boldsymbol{k}((t^{\mathbb{Z}/2}))$ is not immediate.